Precision Physics at High Intensities

Conveners: **Dylan Palo**, Paul King, Allison Zec, Emanuele Mereghetti

Talks

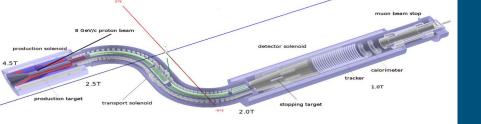
Theoretical Advances in g-2	Shaun Lahert 🥝
Multicultural Greek	13:30 - 14:00
Dispersive determinations of lattice muon g-2 HVP contributions	Kim Maltman 🥝
Multicultural Greek	14:00 - 14:30
Status of the MUonE experiment	Dinko Pocanic 🥝
Multicultural Greek	14:30 - 15:00
Measurement of the muon's anomalous spin precession frequency in the Fermilab Muon g-2 Experime	nt Scott Israel
Measurement of the muon's anomalous spin precession frequency in the Fermilab Muon g-2 Experime Multicultural Greek	nt Scott Israel 14:00 - 14:30
Multicultural Greek	14:00 - 14:30
Multicultural Greek Precision Magnetic Field Measurements in Muon g-2 Multicultural Greek	14:00 - 14:30 David Kessler

Simultaneous Measurement of Electron- and Muon-Proton Elastic Scattering with the MUSE Experiment at PSI Paul Reimer		
Current status of precise measurement of muonium hyperfine structure Takayuki Yamazaki	e in high magnetic field at J-PARC MUSE	
X-Ray Spectroscopy of Light Muonic Atoms	Katharina von Schoeler	

Ab initio overlap integrals for $\mu \rightarrow e$ conversion in nuclei	Matthias Heinz 🥝
Multicultural Greek	13:30 - 13:55
Searching for Lepton Flavor Violation	Kaori Fuyuto 🥝
Multicultural Greek	13:55 - 14:20
Mu2e at Fermilab : Charged Lepton Flavor Violation Experiment	Mamta Jangra 🥖
Mu2e at Fermilab : Charged Lepton Flavor Violation Experiment Multicultural Greek	Mamta Jangra 🥝 14:20 - 14:45
- · ·	and a second

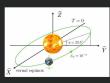
Muon-electron conversion from Lorentz- and CPT-violating operators Multicultural Greek	William McNulty 9/10 - 19:25
PIONEER: A next-generation rare pion decay experiment	Emma Klemets 🥝
Multicultural Greek Precision measurements of kaon and pion decays at NA62	19:25 - 19:50 Peter Cooper
Multicultural Greek	19:50 - 20:15
Studies of \$\tau\$ and dark sector decays at Belle and Belle II	William Jacobs
Multicultural Greek	20:15 - 20:40

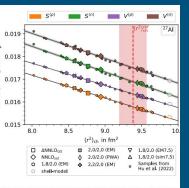
Constraints on the weak mixing angle from future facilities	Wally Melnitchouk
Beefeaters	14:00 - 14:25
Measuring the Weak Charge of the Electron - The MOLLER Experiment	Kent Paschke
Beefeaters	14:25 - 14:50
A high precision determination of the weak mixing angle at low momentum transfer - The P2 experimen	t Caryn Palatchi
Beefeaters	14:50 - 15:15
NOPTREX: Neutron Optics Parity and Time Reversal Experiment	Sepehr Samiei
Beefeaters	15:15 - 15:40

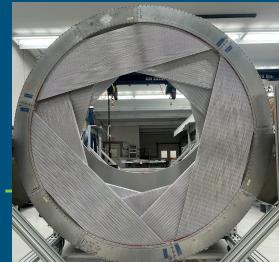

Talks

Theoretical Advances in g-2	S	haun Lahert 🥝
Multicultural Greek		13:30 - 14:00
Dispersive determinations of lattice muon g-2 HVP contributions	к	im Maltman 🥝
Multicultural Greek		14:00 - 14:30
Status of the MUonE experiment	Dii	nko Pocanic 🥝
Multicultural Gr g-2 / Muon EDM		14:30 - 15:00
Measurement 9-27 NOTCOTT EDIVI	riment	Scott Israel
Multicultural Greek		14:00 - 14:30
Precision Magnetic Field Measurements in Muon g-2		David Kessler
Multicultural Greek		14:30 - 15:00
PSI's MuonEDM experiment	Diego S	anz-Becerra 🥝
Multicultural Greek		15:00 - 15:30

Simultaneous Measurement of Electron- and Muon-Proton Elastic Scattering with the MUSE Exper Paul Reimer	iment at PSI
Currents Muonic Atoms/Scattering	C MUSE
X-Ray Spectroscopy of Light Muonic Atoms	Katharina von Schoeler
Multicultural Greek	20:00 - 20:30
Ab initio overlap integrals for μ → e conversion in nuclei Multicultural Greek	Matthias Heinz 🤞 13:30 - 13:55
Multicultural Greek	13:30 - 13:55
Charded Lenton Flavor Viol	
Charged Lepton Flavor Viol	ation
Charged Lepton Flavor Viol	ation

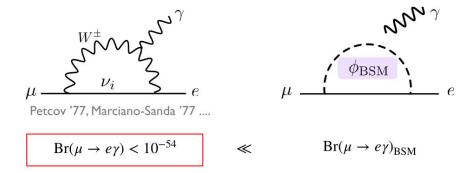

Muon-electron conversion fro	m Lorentz- and CPT-violating operators	William McNulty 🥖 19:00 - 19:25
PIONEER: A next-(Emma Klemets 🥝
Multicultural Greek	Rare Decays	19:25 - 19:50
Precision measure	Nale Decays	Peter Cooper
Multicultural Greek		19:50 - 20:15
Studies of \$\tau\$ and dark se	ctor decays at Belle and Belle II	William Jacobs
Multicultural Greek		20:15 - 20:40


Sun-Centered Frame


- Standard reference frame for LV studies
 - Z-axis towards celestial north
 - X-axis from Earth to Sun at 2000 vernal equinox
- Rotation from SCF to lab-frame coefficients is time-dependent and relies on laboratory location and apparatus orientation

Charged Lepton Flavor Violation

- Ab initio predictions of overlap integrals for spin-independent $\mu \rightarrow e$ conversion
- Comprehensive treatment of Hamiltonian (and many-body) uncertainties
- Correlation analysis accounts for correlated uncertainties
- Consistent with past work on weak scattering
- Key input for inferences of implications for BSM physics from $\mu \rightarrow e$ decay rate

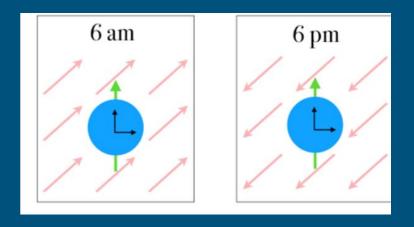


Charged Lepton Flavor Violation Introduction

- CLFV occurs at a negligible rate in the SM
- BSM physics could allow for CLFV at a potentially observable level
- Signal would be unambiguous evidence of BSM physics

Searches for CLFV are strong tools to probe BSM physics.

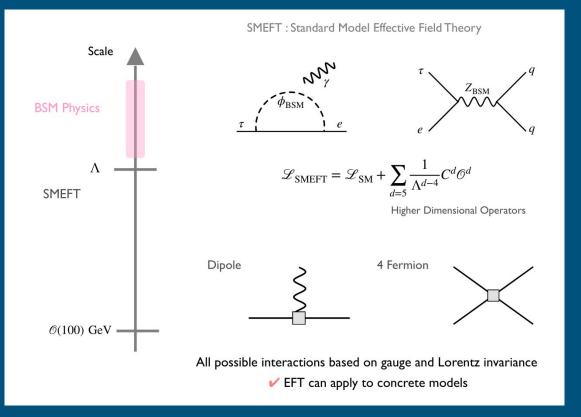
Ex) SM + neutrino mass (vSM)



The Observations of CLFV would point to new physics beyond vSM.

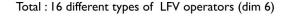
*Underlying mechanism of the neutrino mass.

CLFV Through Lorentz Violation


- Among other BSM physics, CLFV can be a result of Lorentz violation (symmetry under rotations and boosts)
- SM+GR allows for additional lagrangian terms
- Lorentz violation means location, time, and orientation of the experiment matter
 - Leading effect is rotation of Earth with respect to fixed SME background coefficients

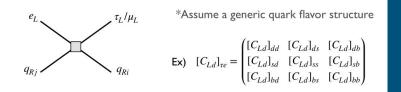
- Most relevant for nuclear μ e conversion are EM (mass dim. 5) and 4-point quark-lepton (mass dim. 6) operators
- Lagrangian ($Q \in \{u, d, s\}, q \in \{u, d\}$; red = CPT-odd) is given by

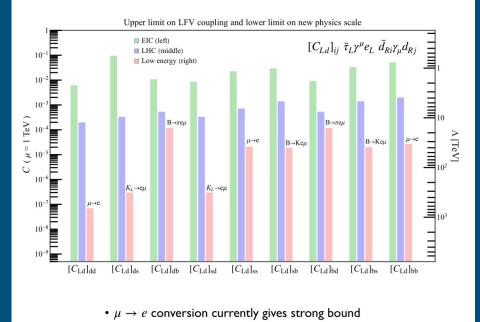
$$\begin{split} \mathcal{L} \supset & -\frac{1}{2} F_{\alpha\beta} \overline{\psi_e} \bigg(\left(m_F^{(5)} \right)_{e\mu}^{\alpha\beta} + i \left(m_{SF}^{(5)} \right)_{e\mu}^{\alpha\beta} \gamma_5 + \left(a_F^{(5)} \right)_{e\mu}^{\mu\alpha\beta} \gamma_{\mu} + \left(b_F^{(6)} \right)_{e\mu}^{\mu\alpha\beta} \gamma_{SY\mu} + \frac{1}{2} \left(H_F^{(5)} \right)_{e\mu}^{\mu\nu\alpha\beta} \sigma_{\mu\nu} \bigg) \psi_{\mu} \\ & + \overline{\psi_q} \psi_q \overline{\psi_e} \bigg(\left(k_{SV}^{(6)} \right)_{QQe\mu}^{\lambda} \gamma_{\lambda} + \left(k_{SA}^{(6)} \right)_{QQe\mu}^{\lambda} \gamma_5 \gamma_{\lambda} + \frac{1}{2} \left(k_{ST}^{(6)} \right)_{QQe\mu}^{\kappa\lambda} \sigma_{\kappa\lambda} \bigg) \psi_{\mu} \\ & + \overline{\psi_q} \gamma_0 \psi_q \overline{\psi_e} \bigg(\left(k_{VS}^{(6)} \right)_{qqe\mu}^{0} + i \left(k_{VF}^{(6)} \right)_{qqe\mu}^{0} \gamma_5 + \frac{1}{2} \left(k_{VV}^{(6)} \right)_{qqe\mu}^{0\lambda} \gamma_{\lambda} + \left(k_{VA}^{(6)} \right)_{qqe\mu}^{0\lambda} \gamma_5 \gamma_{\lambda} + \frac{1}{2} \left(k_{VT}^{(6)} \right)_{qae\mu}^{0\lambda} \sigma_{\kappa\lambda} \bigg) \psi_{\mu} \end{split}$$


Effective Field Theory: Comparison of CLFV Channels

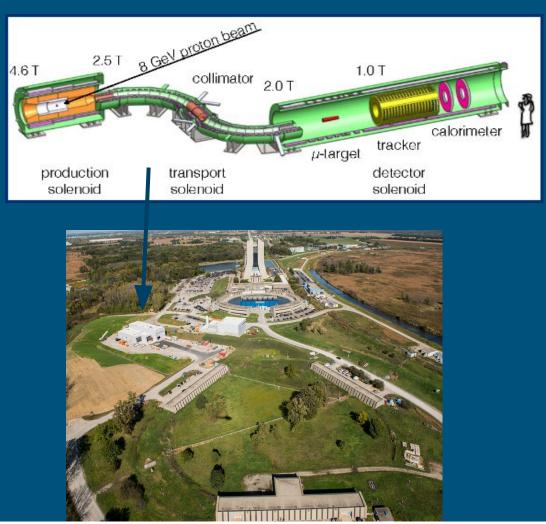
Dylan Palo | Precision Physics at High Intensities | CIPANP 2025 | Slide from Kaori Fuyuto

Effective Field Theory: Comparison of CLFV Channels


CLFV operators



X : Gauge boson ψ : Fermion arphi : Higgs


F. Delzanno, KF, S. Gonzalez-Solis, E. Mereghetti, arXiv 2411.13497

Dylan Palo | Precision Physics at High Intensities | CIPANP 2025 | Slide from Kaori Fuyuto

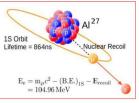
Mu2e Experiment

- Experiment searching for µ→e conversion starting in 2027 at Fermilab
- Plans for a 10000x improvement in the sensitivity over its predecessor experiment

Dylan Palo | Precision Physics at High Intensities | CIPANP 2025 | Slide From Mamta Jangra

Mu2e Signal/Background

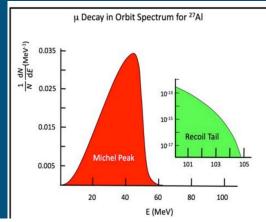
- Signal:
 - Monochromatic energy electron at ~105 MeV
- Backgrounds
 - Decay in orbit (DIO):
 - Precise Momentum Resolution
 - etc...


When muons stopped in Al, a muonic atom is formed. 61% undergo nuclear capture, 39% decay in orbit.

Neutrino-less conversion of a negative muon to an electron in the presence of a nucleus

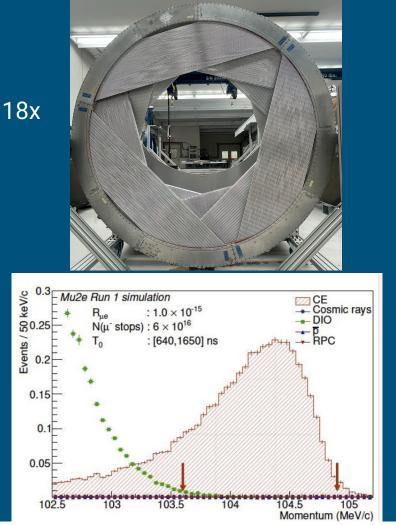
 μ^- + ^{27}Al $\rightarrow e^-$ + ^{27}Al

Signal : Monochromatic energy electron


 $E_{e-} = M_{\mu-} - E_{b} - E_{recoil} = 104.96 \text{ MeV}$

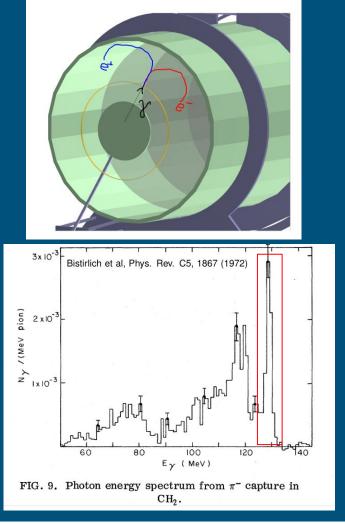
Mu2e aims to improve the current upper limit on the sensitivity by four orders of magnitude

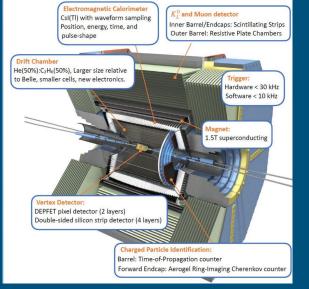
 $R_{\mu e} = \frac{\mu^{-} N \rightarrow e^{-} N}{\mu^{-} N \rightarrow all muon captures}$


Current upper limit on μ – N \rightarrow e – N is set by SINDRUM II (Au target)* R_{µe}<7x10⁻¹³ (90% CL)

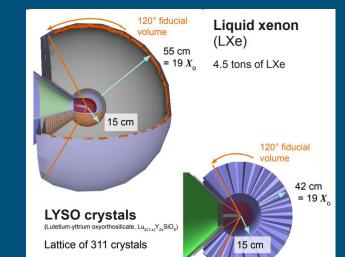
Dylan Palo | Precision Physics at High Intensities | CIPANP 2025 | Slide From Mamta Jangra

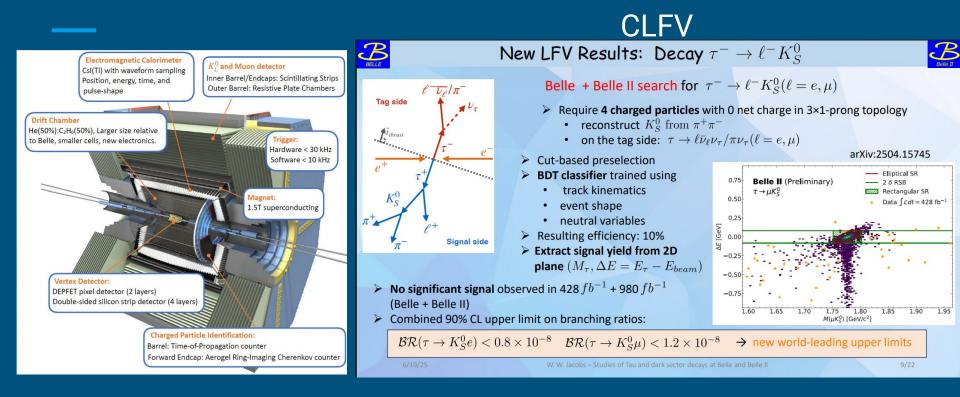
Mu2e Tracker/ Resolution


- 20k straw tubes
- ~180 keV detector resolution for ~105 MeV electron
- Require energy scale of the order ~100 keV

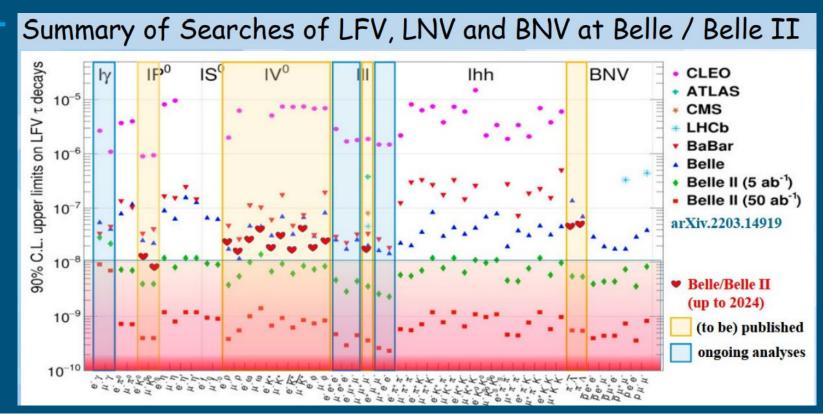

Dylan Palo | Precision Physics at High Intensities | CIPANP 2025 | Slide From Mamta Jangra

Mu2e Momentum Scale


- Data-driven momentum scale
- RPC on polyethylene target results in ~128 MeV photon
- Convert photon and reconstruct e+/e-

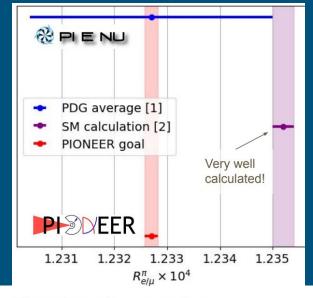

Dylan Palo | Precision Physics at High Intensities | CIPANP 2025 | Slide From Pavel Murat

Rare Decays



Belle II: B-Factory

Dylan Palo | Precision Physics at High Intensities | CIPANP 2025 | Slide From William Jacobs


Belle II: Many Channels!

Dylan Palo | Precision Physics at High Intensities | CIPANP 2025 | Slide From William Jacobs

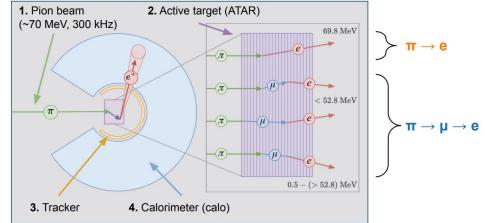
PIONEER: Lepton Flavor Universality

- Test of lepton flavor universality via pion decay ratio at PSI
- Current ratio error bars are 15x larger than the theory
- Plan to match theoretical level of uncertainty

Measure the pion decay ratio:

$$egin{aligned} R^{\pi}_{e/\mu} &= rac{\Gammaig(\pi^+ o e^+
u_e(\gamma)ig)}{\Gammaig(\pi^+ o \mu^+
u_\mu(\gamma)ig)} \ &= 1.2327(23) imes 10^{-4} \, (ext{Exp}) \, ext{[1]} \end{aligned}$$

PIONEER: ATAR/CAL

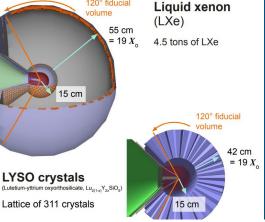

• ATAR:

- Determines pion/muon decay points
- 5D (x,y,z,t,E) tracking system
- O(50) layers
- Good time resolution: < 100 ps
- Sufficient granularity: < 200 μm

• Calorimeter:

- Measure electron momentum/time
- Exploring prototypes in LXe/LYSO

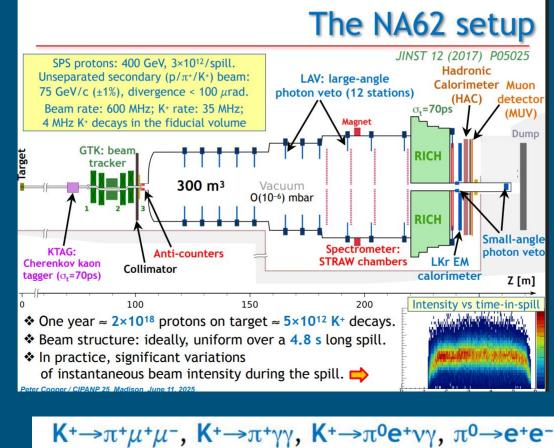
Overview of the experimental setup


PIONEER is exploring 2 calorimeter options

Common features

- High light yield (> 30,000 γ/MeV)
- "Fast", 40 ns decay time
- Both promise < 2% resolution
- Both promise good timing

Differences


- LYSO is segmented by design
- LXe is a single volume
- Density
- Data load per event
- LYSO is slightly radioactive

Dylan Palo | Precision Physics at High Intensities | CIPANP 2025 | Slide From Emma Klemets

NA62

- Charged Kaon experiment at CERN
- Measuring many Kaon/pion branching fractions
- Presented the Run1 results.. Run 2 is ongoing until 2026

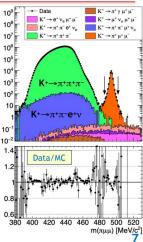
 $K^+ \rightarrow \pi^+ \nu \nu$

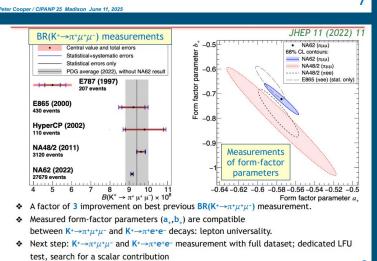
Dylan Palo | Precision Physics at High Intensities | CIPANP 2025 | Slide From Peter Cooper

NA62 **K**+→π+μ+μ-

- Chiral perturbation theory parameters
- Lepton flavor universality (along with other search)
- Observed 27k signal candidates with only 8 background events!
- Extremely clean signal

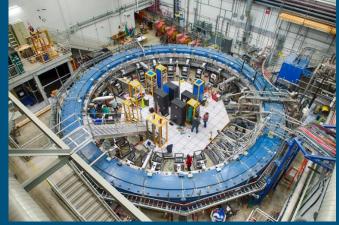
 $W(z) = G_F m_K^2(a_+ + b_+ z) + W^{\pi\pi}(z)$

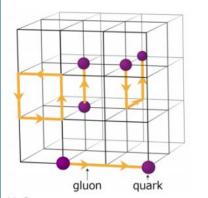

- Run 1 has already improved on limit by factor of 3
 - a_+ , b_+ : real parameters $W^{\pi\pi}(z)$: complex function, two-pion loop



- Dedicated di-muon trigger line.
- ♦ Normalisation: $K^+ \rightarrow \pi^+ \pi^+ \pi^-$ decay.
- Effectively (3.48±0.09)×10¹² kaon decays.
- Signal candidates observed: 27679.
- Negligible background: about 8 events.

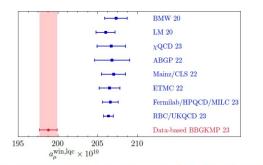
Analysis:

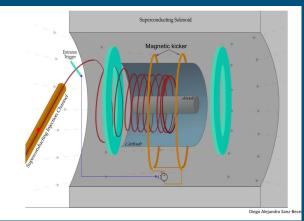

- ► Data divided in 50 equipopulated bins in *z*: $\left(\frac{d\Gamma(z)}{dz}\right)_i = \frac{N_{\pi\mu\mu,i}}{A_{\pi\mu\mu,i}} \cdot \frac{1}{\Delta z_i} \cdot \frac{1}{N_K} \cdot \frac{\hbar}{\tau_K}$
- ▶ Integrating $d\Gamma(z)/dz \rightarrow model-independent B$
- ► $|W(z)|^2$ function values extracted from $d\Gamma(z)/dz$
- Fit of $|W(z)|^2$ data points \rightarrow ChPT form factor parameter measurement



(see D'Ambrosio, Iyer, Mahmoudi, Neshatpout, arXiv:2404.03643)

Dylan Palo | Precision Physics at High Intensities | CIPANP 2025 | Slide From Peter Cooper




M. Savage, 2015 National Nuclear Physics Summer School

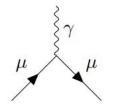
g-2/Muon EDM

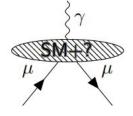
Pre-CMD-3 RESULTS (2'): DISPERSIVE-LATTICE $a_{\mu}^{W1,lqc}$ COMPARISON

Large dispersive-lattice W1 IL, lqc discrepancy (e.g., 6σ with RBC/UKQCD 23)

Anomalous Magnetic Moment

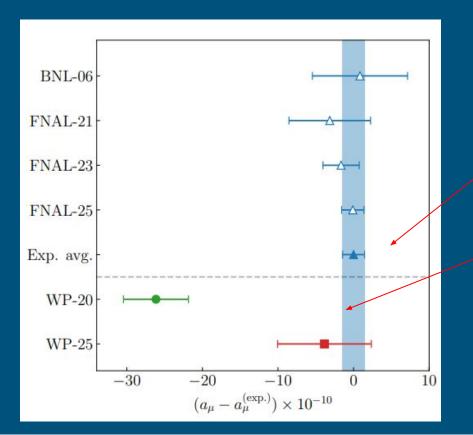
 Experimental deviation from theory would imply new physics! Magnetic moment of muon μ :


Dirac eqn. (tree-level QFT):


Anomalous moment from loop effects:

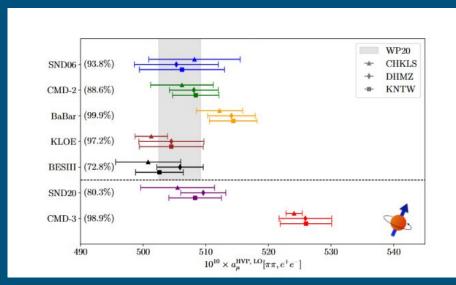
 $\vec{\mu}_{\mu} = \frac{g}{2m_{\mu}}\vec{S}$

q=2


 $a_{\mu} = (g - 2)/2$

Dylan Palo | Precision Physics at High Intensities | CIPANP 2025 | Slide From Shaun Lahert

Anomalous Magnetic Moment



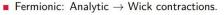
- Muon g-2 collaboration just finished their final result. Parallel talks on:
 - The precision frequency measurement
 - Magnetic field Measurement
 - Theory community posted 2025 White Paper using lattice QCD
 - Two talks on the status/recent advances in theory

g-2 HVP Data-driven

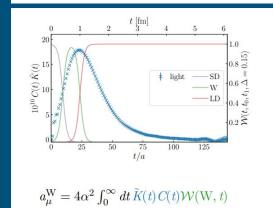
- Calculate using hardon cross-section data
- Dominated by $e + e \rightarrow pi + pi$ -
- Significant discrepency when using the recent CMD-3 data (post WP-20)

$$a_{\mu}^{\mathrm{HVP,LO}} = \left(\frac{\alpha m_{\mu}}{3\pi}\right)^{2} \int_{s_{\mathrm{thr}}}^{\infty} ds \frac{\hat{K}(s)}{s^{2}} R_{\mathrm{Had.}}(s), \quad R_{\mathrm{Had.}}(s) = \frac{3s}{4\pi\alpha^{2}}\sigma \left[e^{+}e^{-} \rightarrow \mathrm{Hadrons}(+\gamma)\right]$$

g-2 HVP Lattice Measurement


- Alternatively HVP contribution can be performed on a lattice
- Calculated in three seperate regions:
 - High energy, Low energy, and "Goldilocks"

Lattice perscription: Wick rotate $(t \rightarrow it)$ and discretize $(a \neq 0)$ the path integral.


$$\langle O \rangle = \frac{1}{Z_{\text{LOCD}}} \int \mathcal{D}\left[q_f, \bar{q}_f\right] \mathcal{D}[U] \mathrm{e}^{-S_F\left[q_f, \bar{q}_f, U\right] - S_G[U]} O\left[q_f, \bar{q}_f, U\right]$$

• Quarks on sites, gluons ($U_{\mu}(n) \equiv \exp{(i a G_{\mu}(n))}$) on links.

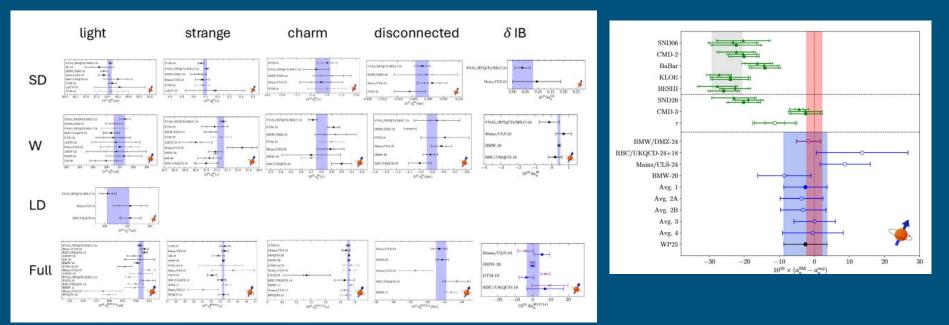
Perform path integral:

- Bosonic: Markov Chain Monte Carlo (Importance Sampling).
- Observables: $\langle O \rangle (\{a, L, m_q\}).$
- Extrapolate, interpolate, or correct (EFT/pQCD) to continuum, infinite volume, physical point.

- SD(~ high energy (pQCD)):
 sensitive to a (lattice spacing).
- LD(\sim low energy (χ PT)):
 - sensitive to L (lattice length).
- ► W: Goldilocks window.
- $\blacktriangleright \ a_{\mu}^{\rm HVP,LO} = a_{\mu}^{\rm SD} + a_{\mu}^{\rm W} + a_{\mu}^{\rm LD}$

Dylan Palo | Precision Physics at High Intensities | CIPANP 2025 | Slide From Shaun Lahert

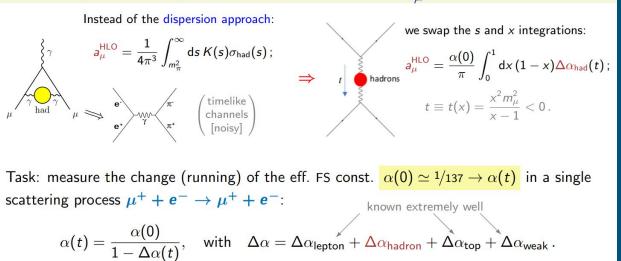
aluon


2015 National Nuclear Physics Summer School

M. Savage

quar

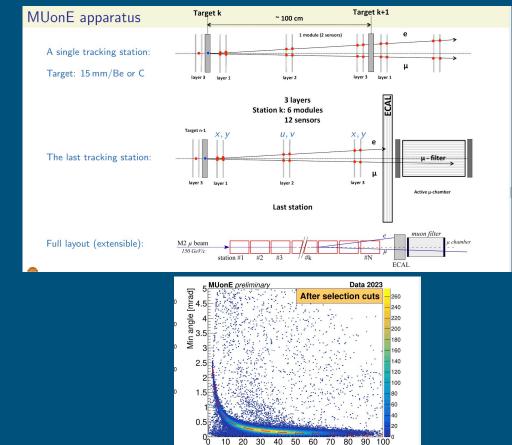
g-2 Theoretical Measurement


- Calculations were performed by several groups
- All groups in strong agreement with one another

MUonE Experiment

- To help resolve this discrepancy..
- MUonE offers an alternative spacelike determination of the HVP contribution
- Measure scattering angles of muons

MUonE experiment: **spacelike** determination of a_{μ}^{HVP}



The sole integral is over a single well-behaved, smooth function.

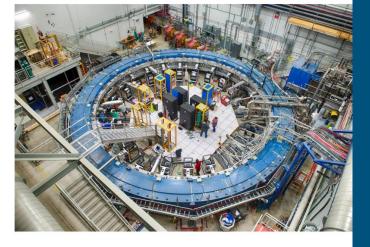
Dylan Palo | Precision Physics at High Intensities | CIPANP 2025 | Slide From Dinko Pocanic

MUonE Experiment: Detector

- ~40 tracking stations combined with an electromagnetic calorimeter and a muon filter
- Angular resolution (muons) of ~ 0.04-5 mrad
- Preliminary data with 2 stations showed proof of principle
- Physics run in 2026

Max angle [mrad]

Dylan Palo | Precision Physics at High Intensities | CIPANP 2025 | Slide From Dinko Pocanic


Muon g-2

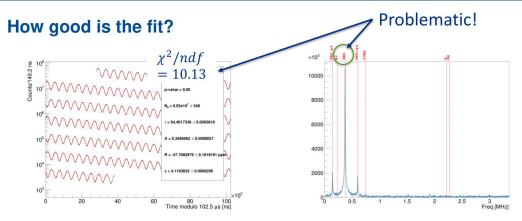
Experimental principle

This talk!

- Storing anti-polarized positive muons in a magnetic storage ring using electrostatic quadrupoles
 - Momentum *rotates* w.r.t. storage ring
 - Spin *precesses* w.r.t. ring because g > 2
- Difference in frequencies proportional to magnetic moment

$$\omega_{s} - \omega_{c} = \omega_{a} \propto \left(\frac{g-2}{2}\right) \frac{eB}{m} = \frac{a_{\mu}eB}{m}$$

We measure ω_{a} B


Via Reidar Hahn

Next talk by David Kessler

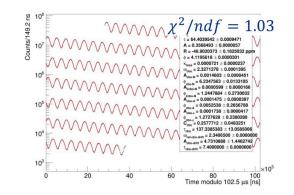
Dylan Palo | Precision Physics at High Intensities | CIPANP 2025 | Slide From Scott Israel

Muon g-2

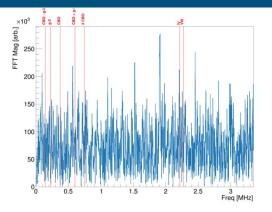
- The number of highest energy e+s oscillates – via parity violation!
- Fit yields w_a
- Need many corrections!:
 - Detector gain
 - Coherent betatron motion

Simple fit – only muon decay and g-2 oscillations accounted for, fit can be improved

FFT of residuals highlights unaccounted for beam dynamics


$$f(t) = N_0 e^{-\frac{t}{\tau_\mu}} (1 + A\cos(\boldsymbol{\omega_a} t - \boldsymbol{\phi}))$$

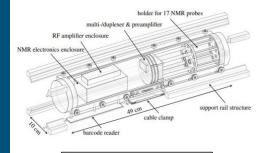
- Basic 5-parameter fit
- Captures two physical processes
 - Muon decay
 - g-2 oscillation


Dylan Palo | Precision Physics at High Intensities | CIPANP 2025 | Slide From Scott Israel

Muon g-2

- 7 different and independent analysis groups fit for beam dynamic corrections, muon loses, etc.
- Dramatically suppress residuals

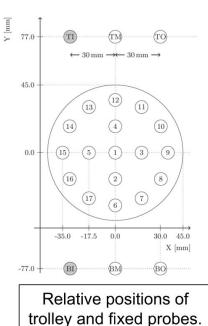
Full fit – muon decay, g-2 oscillations, muon losses, beam dynamics accounted for



Much better residuals – no strong stand-outs for beam dynamics / unaccounted for physical effects

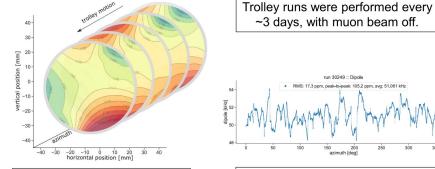
Muon g-2 Magnetic Field

Measurement Overview

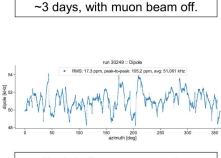

• Trolley Probes and Fixed Probes:

17 **trolley probes** map the field along the muon beam path.

378+ **fixed probes** track changes in the field while muons are running.



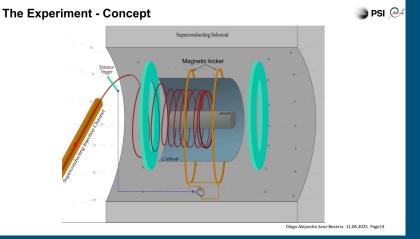
Dylan Palo | Precision Physics at High Intensities | CIPANP 2025 | Slide From David Kessler

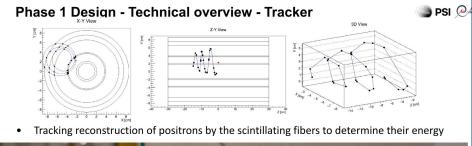

Muon g-2 Magnetic Field

- Discussed the trolley data, calibration NMRs, calibration of the calibration NMRs
- Interpolation between the fixed probes and the trolley, etc.
- Reached 56 ppb uncertainty!
- Overall systematic of 76 ppb

Trolley readings per slice are fit to 2D multipole expansions.

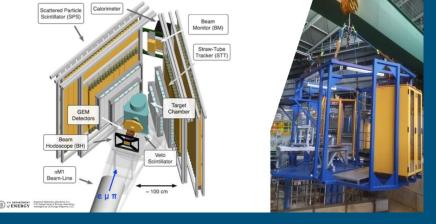
Each trolley run covers the circumference of the storage ring.

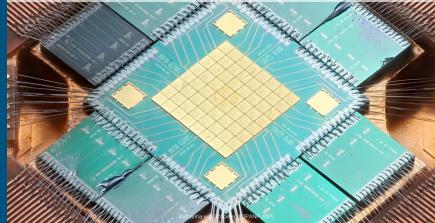

Run-4/5/6 Uncertainties Table


Quantity	Correction (ppb)	$\begin{array}{c} \text{Uncertainty} \\ \text{(ppb)} \end{array}$	
ω_a^m (statistical)		114	
ω_a^m (systematic)		30	
C_e Electric Field	347	27	
C_p Pitch	175	9	
C_{pa} Phase Acceptance	-33	15	
C _{dd} Differential Decay	26	27	
Cml Muon Loss	0	2	
$\langle \omega_p' \times M \rangle$ (mapping, tracking)		34	Field uncertainty total:
$\langle \omega'_p \times M \rangle$ (calibration)		34	56 ppb.
B _k Transient Kicker	-37	22	•••
B _q Transient ESQ	-21	20	Target Achieved!
μ_p'/μ_B		4	
m_{μ}/m_e		22	
Total systematic for \mathcal{R}'_{μ}		76	
Total for a_{μ}	572	139	

Dylan Palo | Precision Physics at High Intensities | CIPANP 2025 Slide From David Kessler

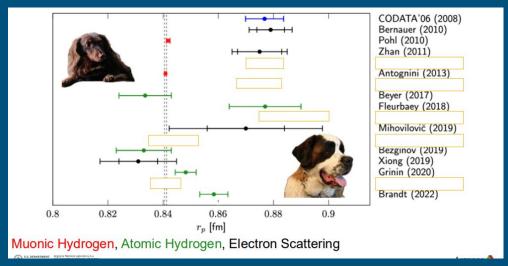
Muon EDM


- Electric field set to "freeze" the muon's spin
- Detector measures the decay positrons on the two trackers
- Asymmetry on the two trackers yields the EDM
- Prototypes of trackers



Dylan Palo | Precision Physics at High Intensities | CIPANP 2025 Slide From Diego Sanz-Becerra

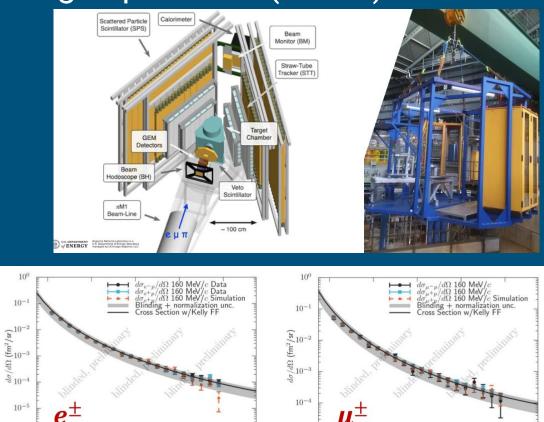
Muon Scattering/ Muonic Atoms


Metallic Magnetic Calorimeter (MMC)

The Muon Proton Scattering Experiment (MUSE)

- Measure the proton's charge radius:
 - Discrepancy between recent measurements
- Mott Cross Section: point scattering of structureless spin-½ particles
 - Cross section adding a form factor
- MUSE will measure e+ p, μ+ p, e- p, μ- p elastic scattering

$$\langle r \rangle^2 \equiv 6 \frac{dG_E}{dQ^2} \bigg|_{Q^2 = 0}$$



Dylan Palo | Precision Physics at High Intensities | CIPANP 2025 | Slide From Paul Reimer

The Muon Proton Scattering Experiment (MUSE)

 10^{-6}

- Most of the data is already recorded..
- Waiting to unblind all of the data

 10^{-5}

40

60

Scattering Angle (°)

80

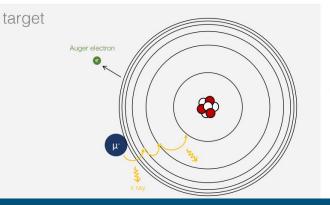
100

Dylan Palo | Precision Physics at High Intensities | CIPANP 2025 | Slide From Paul Reimer

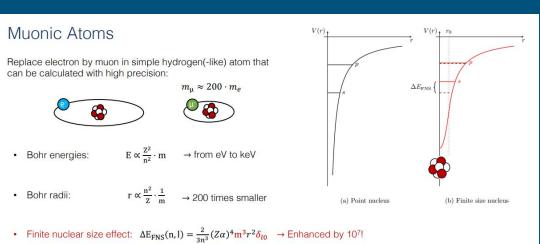
60

Scattering Angle (°)

80


100

40

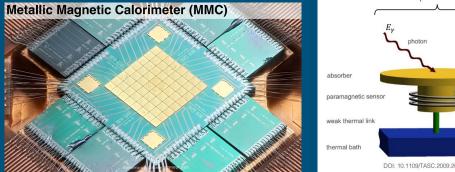

QUARTET Collaboration

- Muonic atoms formed by stopping muons in target
- Muon cascades to ground state
 - Can emit x-rays
- Use x-rays to observe 2p
 -> 1s transition
- Measure charge radius

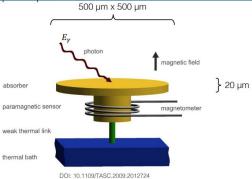
Muonic Atoms

- 1. Stop muons in target material
- 2. Atomic capture in high principal quantum number n
- 3. Cascade down to the ground state via
 - → Auger electron emission (dominating at high n)
 - → and muonic x-ray emission (dominating at low n) → few keV to MeV range

Dylan Palo | Precision Physics at High Intensities | CIPANP 2025 | Slide From Katharina von Schoeler


QUARTET Collaboration

- Many targets will be tested
- X-rays measured using metallic magnetic calorimeter

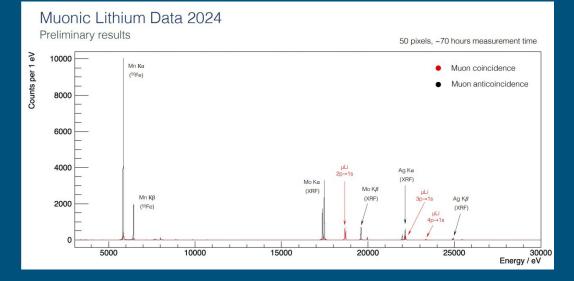

E (2P-1S) keV 33 207 297 8 75 134 µLaser 8^{7Li} El. Scattering Relative radius uncertainty Be ● ¹⁰B µX-ray (HPGe) 10-2 • 11B µX-ray (Crystal) 180 14,15N 0 170 Proton radius -13C 160 20,22Ne puzzle 23Na 10-3 -12C ⁴He 24,26Mg ● ³He

6

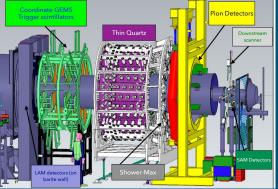
8

2

10

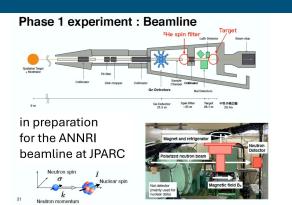

12

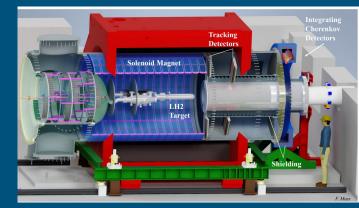
Dylan Palo | Precision Physics at High Intensities | CIPANP 2025 | Slide From Katharina von Schoeler


Low-Z Charge Radii

QUARTET Collaboration

- Data with Lithium (2024)
- Current uncertainty in the radius >100% from 1968
- Next plan to measure oxygen

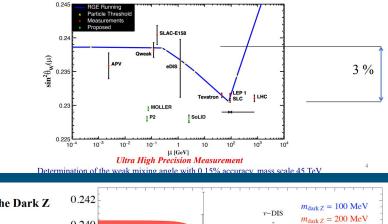


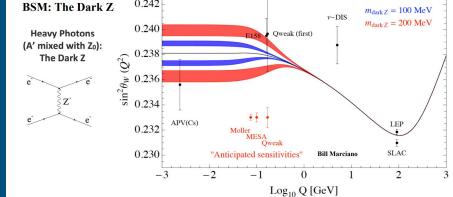

Dylan Palo | Precision Physics at High Intensities | CIPANP 2025 | Slide From Katharina von Schoeler

Impact on weak mixing angle — EIC kinematics Current (JAM with SLAC, JLab6 Apy) - EIC5x100 - EIC10x100 - EIC10-275 - EIC18x275 N $L = 100 \text{ fb}^{-1}$ Whitehill et al. $Q^2 = 4 \text{ GeV}$ in preparation (2025 2 0 200 $\sin^2 \theta_{\rm W}$ $\sin^2 \theta_w$ 0.245JAM+EIC \rightarrow smaller uncertainties on extracted $\sin^2 \theta_{\rm W}$ v-DIS E158 $(M_{\theta})^{0.240}_{0.235}$ for SoLID due to high CEBAF luminosity \rightarrow larger EIC Q^2 range will sample running SoLID of $\sin^2 \theta_W$ 10^{-3} 10^{-2} 10^{-1} 10^{0} 10^{1} 10^{2} 10^{3} Q (GeV)

Parity Violation Weak-Mixing Angle

Talks on several parity violation

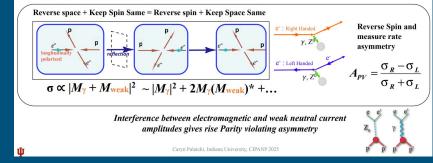

Parity Violation: Weak Mixing Angle

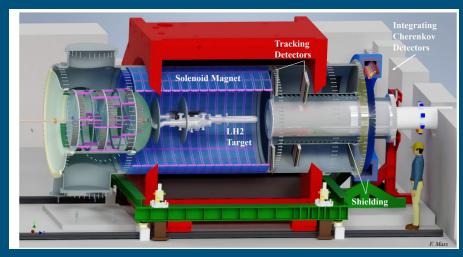

- Talks on several parity violation experiments
- Examples: Moller and P2 will both measure weak mixing angle at low Q < 0.1 GeV
- Deviations from the SM prediction would indicate BSM physics

The relationship between $Q^{p}w$ and $\sin^{2} \theta_{w}$ is modified at the 1-loop level and is dependent on the energy scale at which the experiment is carried out

Dylan Palo | Precision Physics at High Intensities | CIPANP 2025 | Slide From Caryn Palatchi

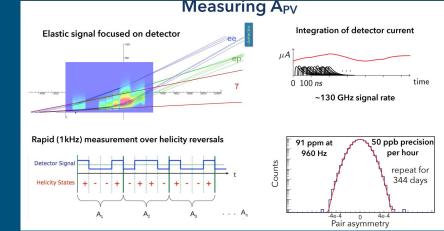
P2 Experiment

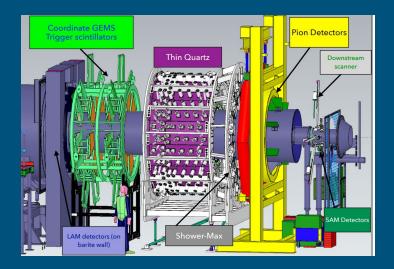

- Goal is a fractional precision of 0.15%..on par with higher energy weak mixing angle measurements
- Hit fixed protons with right and left polarized electrons
- Comparing right and left handed scattering rate
- Liquid hydrogen target..
- Cherenkov detector -> silica bars
- MuPix tracking detector
- Plans to start in 2026


Formulation PVES Experiment

Problem: The weak interaction is weak: $M_{\text{weak}} \ll M_{\gamma}$

Solution: Harness the fact that the weak force is parity violating & spin doesn't reverse under P


 $L = r x p \rightarrow (-r)x(-p) = r x p = L ! : L \rightarrow L$



Moller Experiment

- Alternatively, Moller will use electron-electron collisions to measure the weak mixing angle
- Fractional precision of ~0.1%
- Switch between polarizations rapidly at 1kHz
- Looking for a difference in scattering angle as the polarity is switched
- Physics expected in 2027

