CIPANP 2025

Sepehr Samiei

NOPTREX: Neutron Optics Parity and Time REversal eXperiment

NOPTREX/IRES Collaboration 6/7/2025

NOPTREX: C. Auton¹⁶, E. Babcock²⁹, M. Barlow³⁰, L. Barron-Palos²⁷, L. Charon-Garcia⁴², E. Chekmenev³², A. Couture²⁰, C. Crawford¹⁹, B. Crider³⁹, K. Dickerson²⁹, D. Eigelbach²⁰, S. Endoh^{1,3}, R. Fan^{15,38}, J. Fry²⁴, H. Fujioka⁷, B. Goodson²², V. Gudkov¹⁷, C. Haddock²¹, K. Hagino¹¹, H. Harada³, P. Hautle²⁸, L. Hebenstiel¹⁶, M. Hino¹¹, K. Hirota¹, I. Ide¹, M. Iinuma⁶, H. Ikegami¹⁰, T. Ino⁴, R. Ishiguro¹³, S. Ishimoto⁴, K. Ishizaki¹, T. Iwata⁹, P. Jahn²², C. Jiang¹⁸, W. Jiang¹⁵, K. Kameda⁷, S. Kawamura¹, G. Kim¹⁴, A. Kimura³, P. King²³, M. Kitaguchi¹, Y. Kiyanagi¹, J. Koga², H. Kohri⁸, A. Komives³¹, S. W. Lee¹⁴, Q. Lu^{15,38}, G. Luan³⁴, M. Luxnat¹⁶, T. Matsushita¹, M. McCrea³⁶, J. Mills²⁴, K. Mishima⁴, Y. Miyachi⁹, T. Momose⁵, T. Morishima¹, T. Mulkey⁴⁵, Y. Niinomi¹, I. Novikov²⁵, J. O'Mahar¹⁹, T. Okudaira¹, M. Okuizumi¹, K. Ogata⁸, T. Oku³, G. Otero¹⁶, J. Palomino³⁹, S. Penttila¹⁸, A. Perez-Martin²⁷, A. Petrilla²², B. Plaster¹⁹, X. Ruan³⁴, K. Sakai³, S. Samiei¹⁶, M. Sarsour⁴⁵, D. Schaper¹⁶, M. Scott⁴⁶, R. Shchepin³³, T. Shima⁸, H. Shimizu¹, Z. Siraj²², W. Snow¹⁶, D. Spayde³⁵, H. Tada¹, J. Tang³⁷, Z. Tang²⁰, Y. Tani⁷, S. Takada², Y. Takahashi¹¹, D. Takahaski¹², K. Taketani⁸, A. Taninah⁴⁰, K. Tateishi¹⁰, X. Tong¹⁵, T. Uesaka¹⁰, N. Vassilopoulos¹⁵, M. Veillette²⁶, G. Visser¹⁶, N. Wada¹, M. Wan⁴³, Y. Wang¹⁹, D. Wei⁴¹, H. Wijerante⁴⁵, J. Winkelbauer²⁰, T. Yamamoto¹, Y. Yamagata¹⁰, H. Yan⁴³, H. Yoshikawa⁸, T. Yoshioka², M. Yosoi⁸, L. Zanini⁴⁴, M. Zhang^{15,16}, Q. Zhang³⁴

IRES: D. Bishop¹⁶, J. Britt²⁴, S. LeRose¹⁹, N. Niemotka³⁵, N. Palley⁴⁶, L. Potts²⁵, E. Shipp¹⁶, K. Swafford²⁴, J. Traywick³⁹, D. Waxley²⁶, M. Wilson²⁶, A. Winterman¹⁹

¹Nagoya, ²Kyushu, ³JAEA, ⁴KEK, ⁵British Columbia, ⁶Hiroshima, ⁷Tokyo Inst. Tech., ⁸Osaka, ⁹Yamagata, ¹⁰RIKEN, ¹¹Kyoto, ¹²Ashikaga, ¹³Japan Women's, ¹⁴Kyungpook, ¹⁵CSNS, ¹⁶Indiana, ¹⁷South Carolina, ¹⁸ORNL, ¹⁹Kentucky, ²⁰LANL, ²¹Phase III Physics, ²²Southern Illinois, ²³Ohio, ²⁴Eastern Kentucky, ²⁵Western Kentucky, ²⁶Berea, ²⁷UNAM, ²⁸PSI, ²⁹Juelich, ³⁰Nottingham, ³¹DePauw, ³²Wayne State, ³³SDSM&T, ³⁴CIAE, ³⁵Hendrix, ³⁶Manitoba, ³⁷USTC, ³⁸IHEP, ³⁹Mississippi, ⁴⁰LSU/Shreveport, ⁴¹Tech. Inst. Phys. Chem., ⁴²TRIUMF, ⁴³ Ningbo, ⁴⁴ESS, ⁴⁵ Georgia State, ⁴⁶Centre

IRES: International Research Experiences for Students

One experiment: Five neutron sources

Neutron-Nucleus Resonances

dense set of resonances just above neutron separation energy

mainly L=0 resonances, but lots of L=1 resonances

Three scientific goals of NOPTREX: Why Do IT?

- (1) Understand P violation in heavy nuclei
- -Quantify mean square weak matrix element <M²> in heavy nuclei -Compare with statistical theory of P violation in heavy nuclei
- (2) Search for P-odd/T-odd NN interaction -Discover new source of P-odd/T-odd interaction
- (3) Search for P-even/T-odd NN interaction
- -Discover new source of P-even/T-odd interaction
- -Aid interpretation of P-odd/T-odd electric dipole moment (EDM) searches

Neutron-Nucleus forward scattering amplitude

$$egin{aligned} f &= A + B(ec{s} \cdot ec{I}) + C(ec{s} \cdot ec{k}) + D(ec{s} \cdot [ec{k} imes ec{I}]) \ &+ E(ec{k} \cdot ec{I}) + F(ec{k} \cdot ec{I})(ec{s} \cdot [ec{k} imes ec{I}]) \end{aligned}$$

Elastic (zero angle scattering) scattering amplitude as scalar products of \vec{s} , \vec{I} , and \overline{k} :

- A is dominated by (spin independent) strong interactions.
- B is from strong interaction spin-spin interactions.
- C & E come from parity-violating (P-odd) interactions.
- **D** comes from time- and -parity violating (P-odd, T-odd) interactions.
- F comes from T violating but parity-conserving (P-even, T-odd) interactions.

Beda and Skoy, "Current Status of Research on T Invariance in Neutron-Nuclear Reactions."

Why C, D & F, Are Null Tests

- For forward scattering initial and final state coincide, so any observable odd under P or T must vanish unless the corresponding symmetry is broken.
- The *difference* of total cross sections between two spin states therefore isolates exactly one coefficient in forward scattering amplitude using optical theorem.
- Ryndin theorem: In the absence of TRIV, swapping the incoming and outgoing spin–momentum configuration leaves the forward transmission **probability** unchanged. Any non-zero D,F is direct symmetry violation (Ryndin 1964, Gudkov & Bowman 2014).
- A null test for T: no "final state effects"

$$\sigma_{\rm tot} = \frac{4\pi}{k} \, {\rm Im} \, f(\hat{\mathbf{k}}),$$

Enhancement of parity violation: mechanism

P-odd amplification in a p-wave resonance near a s-wave

$$H = \begin{pmatrix} E_s - i\Gamma_s/2 & v \\ v & E_p - i\Gamma_p/2 \end{pmatrix}$$

7

"Structural" enhancement: The weak mixing lets the large *s-*wave capture amplitude feed the tiny *p-*wave channel.

"Complexity/Dynamical" enhancement: in a nucleus excited by neutron capture, the interval Ep-Es between the chaotic compound states (resonances) of opposite parity is very small.

Recently measured for ¹³⁹La!

Dynamical enhancement of Parity violation

→Number of components to express 100eV state density : $N = \Gamma_{\rm spr}/D \sim 10^5$

 $N \sim 10^5 \rightarrow 10^2 \sim 10^3$ times enhancement compared with one particle state

Dynamic Enhancement ~10³ : caused by high level density

Amplification of P-odd asymmetry in p-wave n-A resonance

Helicity dependence of the p-p scattering cross section

-(1.7±0.8)×10⁻⁷ @E=15MeV $A_{\rm L} = \frac{\sigma_+ - \sigma_-}{\sigma_+ + \sigma_-}$

Interaction between nucleons: 10⁻⁷ P-violation

Helicity dependence of cross section in neutron transmission ¹³⁹La (Dubna, Alfimenkov 1982)

0.097±0.003 @E_n=0.74eV

Compound nucleus: 10⁻¹ P-violation

P-odd amplitude can be enhanced by ~10⁶ in compound nucleus. Measured more than 40 years ago.

Parity-odd Asymmetry Measurement Methods

Relations with quantum chaos

Level spacing of compound resonance

- Level repelling was observed
- Consistent with GOE (Gaussian orthogonal ensemble i.e. random matrix: statistical nature)

Ideas of random matrix theory were used as assumptions in TRIPLE analysis of parity violation

Level spacing of quantum chaos system

Eigenvalues of the the wave function in the Sinai billiard potential

$$(\Delta + k_n^2)\psi_n = 0$$

Potential of Sinai billiard

Level spacing of eigenvalues obeys GOE calculation

(1) Understand P violation in heavy nuclei Quantify mean square weak matrix element <M²> in heavy nuclei Compare with statistical theory of P violation in heavy nuclei The TRIPLE collaboration calls the many-body parity

non-conserving matrix element variance M^2 :

$$M^{2} = \overline{|\langle \psi_{s} | V_{pnc} | \psi_{p} \rangle|^{2}} - \overline{|\langle \psi_{s} | V_{pnc} | \psi_{p} \rangle|^{2}}_{232}$$

Horizontal (A): Mass number of the compound nucleus whose parity–violating asymmetry was measured (from A \approx 40 up to A \approx 240).

vertical (Γ_w in 10^{-7} eV): The weak spreading width extracted for that nucleus by the TRIPLE collaboration

$$\frac{\sigma_{+} - \sigma_{-}}{\sigma_{+} + \sigma_{-}} = \frac{\Delta \sigma_{\rm P}}{2\sigma} = -\frac{2W}{E_{\rm p} - E_{\rm s}} \sqrt{\frac{\Gamma_{\rm s}^{\rm n}}{\Gamma_{\rm p}^{\rm n}}} \sqrt{\frac{\Gamma_{\rm p,j=\frac{1}{2}}^{\rm n}}{\Gamma_{\rm p}^{\rm n}}}$$

W=<s|V_{pnc}|p>= P-odd weak mixing amplitude

Fig. 17. TRIPLE results for weak spreading widths Γ_w versus mass number in the region A = 90 - 238.

Measured P-odd asymmetries in n-A resonances

We want to (1) search in unmeasured nuclei, (2) make use of resonances for T

Mitchell, Phys. Rep. 354 (2001) 157 Shimizu, Nucl. Phys. A552 (1993) 293

 $|A_{
m L}|$

10⁻¹

Title(T Violation in n-A Reactions) Conf(Theoretical Issues and Experimental Opportunities in Searches for Time Reversal Invariance Violation) Date(2018/12/07) At(Amherst)

PV search in 140<A<200 nuclei

PV resonances occur If S1/S0 is between 1/3 and 10. The best TRIPLE resonances Have S1/S0 ~ 1

S0 – s-wave neutron strength function S1 – p-wave neutron strength function

Neutron strength function is proportional to number of resonances per unit energy range at neutron separation (E=0) threshold. What about 140<A<180? No data!

S1/S0 not so different from ¹³⁹La, ⁸¹Br, ¹³¹Xe

It only takes one discovery to be useful for NOPTREX

many I>0 nuclei in this range

We are searching here. Initial data taken on 50 nuclei! Part of JPARC Long-Term Proposal award

(n, γ) resonance spectroscopy (LANSCE, CSNS, JPARC,...?)

DANCE (BaF2, Los Alamos)

GTAF-2 (BaF2, CSNS)

ANNRI (Ge, JPARC)

Errors on <M²> are dominated by poor knowledge of resonance quantum numbers (L, S, J)

25 years after TRIPLE work, world now has higher neutron flux and many new (n, γ) spectrometers

JPARC Long-Term Proposal beamtime award in progress for this work

FP12 (NaI(TI), Los Alamos)

Goal (2): P-odd/T-odd $D(\vec{s} \cdot [\vec{k} \times \vec{I}])$

- Optical theorem relates forward scattering cross section to spin dependent part of cross section: $\Delta \sigma_p = \frac{4\pi}{k} Im(f_- f_+)$
- Optical theorem relating forward scattering cross section to spin dependent part with a polarized target: $\Delta \sigma_{PT} = \frac{4\pi}{k} Im(f_{\uparrow} f_{\downarrow})$
- For case of 2-resonance mixing: w_{TP} : P-odd weak mixing matrix element w: P-odd/T-odd weak mixing matrix element
- κ function of resonance widths and spins (recently measured for $^{139}La!)$

$$\frac{\Delta \sigma_{PT}}{\Delta \sigma_P} = \kappa(J,\varphi) \frac{w_{TP}}{w}$$

$$\kappa(J,\phi) = \frac{2(J+\frac{1}{2})}{(2J+1)} \sin 2\phi \quad \tan \phi = \sqrt{\frac{\Gamma_p^{n,+}}{\Gamma_p^{n,-}}}$$

The enhancement of P-odd/T-odd amplitude on p-wave resonance (σ .[K X I]) is (almost) the same as for P-odd amplitude (σ .K).

Experimental observable: ratio of P-odd/T-odd to P-odd amplitudes

$$\lambda_{PT} = \frac{\delta \sigma_{PT}}{\delta \sigma_P}$$

 λ can now be measured with a stat. uncertainty of ~10⁻⁶ in 10⁷ sec at MW-class spallation neutron sources.

For 10⁶ p-wave resonance amplification, T-odd amplitude in nucleon/strong amplitude)~10⁻¹²

~10X more sensitive than present limits from neutron/nuclei EDMs

For updated EDM limits and its implications, see Degenkolb et al, : arXiv:2403.02052v1 [hep-ph] 4 Mar 2024

Expressions for λ_{PT} from different BSM sources

$$\frac{W_{TP}}{W} = 0.12|\eta_n| = |(-1.2g_s\bar{g}_0 + 6.0g_s\bar{g}_1 + 2.4g_s\bar{g}_2)10^5|.$$

where g_s =(strong) pion coupling, g_0 , g_1 , g_2 are P-odd/T-odd pion couplings for I=0,1,2

$$\frac{W_{TP}}{W} = 5.3 \times 10^{4} |\theta| \quad \text{in terms of } \theta_{\text{QCD}}$$

$$\frac{W_{TP}}{W} = |(-1.0(\tilde{d}_{u} + \tilde{d}_{d}) + 24(\tilde{d}_{u} - \tilde{d}_{d}))10^{20}|/\text{cm} \quad \text{in terms of quark chromo-EDMs}$$

$$\frac{W_{TP}}{W} < 10^{-5} \quad \text{present limit from EDM experiments}$$

V. V. Flambaum and A. J. Mansour, Phys. Rev. C 105, 015501 (2022).

P. Fadeev and V. V. Flambaum, Phys. Rev. C 100 (2019).

N. Yamanaka, B. K. Sahoo, N. Yoshinaga, T. Sato, K. Asahi, and B. P. Das, Eur. Phys. J. A 53, 54 (2017).

S. Mantry, M. Pitschmann, and M. J. Ramsey-Musolf, Phys. Rev. D 90, 054016 (2014).

Y. V. Stadnik, V. A. Dzuba, and V. V. Flambaum, Phys. Rev. Lett. 120, 013202 (2018).

(1) Search for P-odd/T-odd NN interaction -polarized ¹³⁹La+polarized n, Phase 1/Phase 2 (JPARC)

Phase 2 : T-violation search with perpendicular spins

- · High T-violation sensitivity
- · Difficult neutron spin transport
- Dedicated beamline

Phase 1 experiment : Beamline

in preparation for the ANNRI beamline at JPARC

31

Goal (3): P-even/T-odd

$$F(ec{k}\cdotec{I})(ec{s}\cdot[ec{k} imesec{I}])$$

- Mixes two different p resonances. Operator in F term is a rank 2 tensor, so Wigner–Eckart theorem is satisfied
- T reversal acts on channel spins S = I ± $\frac{1}{2}$, so we need two p resonances with different S. Denote them |p1> and |p2> with energies $E_{1,2}$.
- For P-even/TRIV off-diagonal matrix element $w_T \equiv \langle p1 | V_T | p2 \rangle$ the cross-section difference is:

$$\Delta \sigma_T(E_1) \simeq \frac{4\pi}{k^2} \frac{\sqrt{\Gamma_{p_1}^n \Gamma_{p_2}^n}}{(E_1 - E_2)} \frac{w_T}{E_1 - E_2} \frac{(E_1 - E_2)^2}{(E_1 - E_2)^2 + \frac{1}{4}(\Gamma_{p_1} + \Gamma_{p_2})^2}$$

• No structural enhancement: "only" 10³ complexity enhancement

Polarization and Alignment

Alignment:

$$F(ec{k}\cdotec{I})(ec{s}\cdot[ec{k} imesec{I}])$$

F term is a **rank-2 irreducible tensor built from two copies of the target-spin vector I**

Clebsch–Gordan coupling of two rank-1 tensors (the spherical components of ${f I}$):

$$\Gamma_q^{(2)}({f I},{f I}) \;=\; ig[{f I}\otimes{f I}ig]_q^{(2)} \;=\; \sum_{m_1,m_2=-1}^{+1} ig\langle 1\,m_1,\; 1\,m_2\,ig|\,2\,qig
angle\; I_{m_1}\,I_m$$

quadrupole order: spins prefer the *z* but may point both up and down equally (think of a cigar vs. a pancake distribution)

Can be created in deformed nuclei with a large electric quadrupole moment acted on with a crystal-generated electric field at low T

Polarization:

What About P-even/T-odd NN?

No P-even/T-odd effects in Standard Model: CKM, θ both P-odd/T-odd Lowest mass meson exchange from $\rho^{+/-}$ [C-odd, J≥1] [Herczeg Nucl. Phys. **75**, 655 (1966), Simonius PLB **58**, 147 (1975)] **VERY few experiments:**

Charge symm. breaking [Simonius PRL **78**, 4161(1997)]: $g_{\rho} < 7x10^{-3}$ N transmission aligned Holmium (P. R. Huffman et al, PRC 55, 2684 (1997): $g_{\rho} < 6x10^{-2}$

Comparing with EDM P-odd/T-odd:

g_π<10⁻¹¹

Direct constraints on P-even/T-odd NN interactions are poor Y. Uzikov **Three** scientific goals of NOPTREX: **Present Status**

(1) Understand P violation in heavy nuclei
 -New p-wave resonances in 140<A< 200: data taken, under analysis
 -Ongoing (n, γ) spectroscopy for TRIPLE data reanalysis

(2) Search for P-odd/T-odd nA interaction
 -Phase 1 approval at JPARC! Building apparatus, ¹³⁹La polarized to
 >35% by dynamic nuclear polarization

(3) Search for P-even/T-odd nA interaction -Cryogenic R & D work in China for tensor alignment in ¹²⁷I crystal.

Experiment planned for Chinese Spallation Neutron Source (CSNS)

Thanks!

Hamiltonian for s-p mixing

Take a pure s resonance $|s\rangle$ at E_s and a p resonance $|p\rangle$ at E_p with widths $\Gamma_{s,p}$. The weak parity-violating nucleon-nucleon force introduces a real mixing matrix element $v \equiv \langle s | V_{PV} | p \rangle$.

$$-H = \begin{pmatrix} E_s - i\Gamma_s/2 & v \\ v & E_p - i\Gamma_p/2 \end{pmatrix}$$

Expand the *T*-matrix to first order in v: $T_{fi}^{(1)} = \sum_{\alpha,\beta=s,p} \langle f | V_{\alpha} | \alpha \rangle \frac{1}{E - E_{\alpha} + i\Gamma_{\alpha}/2} v_{\alpha\beta} \frac{1}{E - E_{\beta} + i\Gamma_{\beta}/2} \langle \beta | V_{\beta}^{\dagger} | i \rangle$

where $V_{s,p}$ couple the neutron to the compound levels. At $E \approx E_p$ only the chain $|i\rangle \rightarrow |s\rangle \rightarrow |p\rangle \rightarrow |f\rangle$ is resonant.

Helicity-dependent total cross section: $\Delta \sigma_P(E_p) = \frac{4\pi}{k^2} \frac{\sqrt{\Gamma_s^n \Gamma_p^n}}{\Gamma_p} \frac{v}{E_p - E_s} \frac{(E_p - E_s)^2}{(E_p - E_s)^2 + \frac{1}{4}(\Gamma_s + \Gamma_p)^2}$

THEORY OF T-VIOLATING P-CONSERVING EFFECTS IN NEUTRON-INDUCED REACTIONS

V.P. GUDKOV

Leningrad Nuclear Physics Institute, Gatchina, Leningrad 188350, USSR

Received 10 January 1990 (Revised 25 July 1990)

Forward transmission \Rightarrow null test for T violation Enhancement of asymmetry from high level density~10³

P-even/T-odd NN interactions can mix different p-wave resonances

$$\Delta \sigma_{\rm T} = \frac{4\pi}{k} \operatorname{Im} \left\{ \Delta f_{\rm T} \right\} \qquad \Delta \sigma_{\rm T} \approx \frac{4\pi}{k^2} \frac{\langle \tilde{\Gamma}_{\rm p}^{\rm n} \rangle v_{\rm T}}{[p_1][p_2]} \left\{ (E - E_{\rm p1}) \Gamma_{\rm p2} + (E - E_{\rm p2}) \Gamma_{\rm p1} \right\}$$

where $iv_{\rm T} = \langle \varphi_{\rm p2} | \hat{V}_{\rm T} | \varphi_{\rm p1} \rangle;$
 $\langle \tilde{\Gamma}_{\rm p}^{\rm n} \rangle = (\Gamma_{\rm p1}^{\rm n} (-) \Gamma_{\rm p2}^{\rm n} (+))^{1/2} - (\Gamma_{\rm p1}^{\rm n} (+) \Gamma_{\rm p2}^{\rm n} (-))^{1/2}$

 $I_{p}(+)$ and $I_{p}(-) = I_{p}(J=I\pm 1/2)$

$$P: |\ell sI\rangle \rightarrow (-1)^{\ell} |\ell sI\rangle$$

$$\ell = 0,1$$

$$T: |\ell sI\rangle \rightarrow (-1)^{i\pi S}K |\ell sI\rangle$$

$$S = I \pm 1/2$$

$$\bigcup$$
P-odd \Rightarrow s-wave and p-wave
T-odd \Rightarrow channel spin S

interference

interference

к(J) "Spectroscopy" Factor

P transformation acts on L=0,1 T transformation acts on S=I +/- 1/2

$$P: |\ell sI\rangle \to (-1)^{\ell} |\ell sI\rangle$$
$$\ell = 0,1$$

$$T : |\ell sI\rangle \to (-1)^{i\pi S} K |\ell sI\rangle$$
$$S = I \pm 1/2$$

p-wave
$$\sqrt{\Gamma_p^n}$$
 $\sqrt{\Gamma_{p,j=3/2}^n}$ $\sqrt{\Gamma_{S=I+1/2}^n}$
s-wave $\sqrt{\Gamma_s^n}$ $\sqrt{\Gamma_{s,j=1/2}^n}$ $\sqrt{\Gamma_{S=I-1/2}^n}$

$$\begin{aligned} \kappa(J = I + 1/2) &= \left[\frac{\sqrt{I}}{2I + 1}\right] \left(-2\sqrt{I} + \sqrt{2I + 3}\frac{y}{x}\right) \\ \kappa(J = I - 1/2) &= \left[\frac{1}{2\sqrt{2I + 1}}\right] \left(2\sqrt{I + 1} + \sqrt{2I - 1}\frac{y}{x}\right) \end{aligned}$$

Spin-weighted linear combination of p-wave resonance widths in the j=1/2 and j=3/2 channels

Must be measured

P-odd Asymmetries on p-wave Neutron Resonances

Parity violations observed by TRIPLE

Target	Reference	All	p+	<i>p</i> -	
⁸¹ Br	[67]	1	1	0	Measi
⁹³ Nb	[125]	0	0	0	
¹⁰³ Rh	[132]	4	3	1	asvmr
¹⁰⁷ Ag	[97]	8	5	3	asynn
¹⁰⁹ Ag	[97]	4	2	2	
¹⁰⁴ Pd	[134]	1	0	1	reson
¹⁰⁵ Pd	[134]	3	3	0	
¹⁰⁶ Pd	[43,134]	2	0	2	
¹⁰⁸ Pd	[43,134]	0	0	0	
¹¹³ Cd	[121]	2	2	0	\sim ·
¹¹⁵ In	[136]	9	5	4	Simila
¹¹⁷ Sn	[133]	4	2	2	••••••
¹²¹ Sb	[101]	5	3	2	-0.0
¹²³ Sb	[101]	1	0	1	asym
¹²⁷ I	[101]	7	5	2	-
¹³¹ Xe	[140]	1	0	1	exnec
¹³³ Cs	[126]	1	1	0	0700
¹³⁹ La	[152]	1	1	0	-+-+:-+
²³² Th below 250 eV	[135]	10	10	0	statisi
²³² Th above 250 eV	[127]	6	2	4	
²³⁸ U	[41]	5	3	2	
Total		75	48	27	
Total excluding Th		59	36	23	

ured P-odd metries in n-A ances >3 σ ar #s of + and – metries, as ted in tical model

additional fe

G. E. Mitchell, J. D. Bowman, S. I Penttila, E. I. Sharapov, Phys. Rep. 354, 1 (2001).

arXiv:2403.02052v1 [hep-ph] 4 Mar 2024

38pt=5

 $g_{\pi^{(1)}} < 5.9 \times 10^{-9}$

g_π⁽²⁾<6.8 x 10⁻⁹

SciPost Physics

Submission

A Global View of the EDM Landscape

Skyler Degenkolb¹, Nina Elmer², Tanmoy Modak², Margarete Mühlleitner³, and Tilman Plehn^{2,4}

Physikalisches Institut, Universität Heidelberg, Germany
 Institut für Theoretische Physik, Universität Heidelberg, Germany
 Institute for Theoretical Physics, Karlsruhe Institute of Technology, Karlsruhe, Germany
 Interdisciplinary Center for Scientific Computing (IWR), Universität Heidelberg, Germany

Abstract

Permanent electric dipole moments (EDMs) are sensitive probes of the symmetry structure of elementary particles, which in turn is closely tied to the baryon asymmetry in the universe. A meaningful interpretation framework for EDM measurements has to be based on effective quantum field theory. We interpret the measurements performed to date in terms of a hadronic-scale Lagrangian, using the SFitter global analysis framework. We find that part of this Lagrangian is constrained very well, while some of the parameters suffer from too few high-precision measurements. Theory uncertainties lead to weaker model constraints, but can be controlled within the global analysis.

Beyond-the-Standard-Model (BSM) operators

• Each Observable in NOPTREX corresponds to BSM operator.

- 1 PV Observable $(\boldsymbol{\sigma} \cdot \hat{\mathbf{k}})$
- 1. Hadronic level: $\mathcal{L}_{PV} = h_{\pi}^1 \bar{N} \tau^3 \pi N + h_{\rho}^{0,1} \bar{N} \rho_{\mu} N + \dots$
- 2. SMEFT parents: $\mathcal{O}_{Hud} = i(\tilde{H}^{\dagger}D_{\mu}H) \bar{u}_R \gamma^{\mu} d_R$, plus four-quark (V-A)
- 3. Example UV: heavy W' gauge boson, scalar leptoquarks.
- 2 PVTV Observable $\boldsymbol{\sigma} \cdot (\hat{\mathbf{k}} \times \mathbf{I})$
- 1. $\mathcal{L}_{\text{PVTV}} = \bar{g}_{\pi}^{0,1,2} \, \bar{N} \tau^i \pi^i N + \dots$
- 2. Parents: quark chromo-EDM $\tilde{d}_q \bar{q} \sigma^{\mu\nu} T^a G_{\mu\nu} \gamma_5 q$, three-gluon (Weink $w G \tilde{G} G$.
- 3. UV: QCD θ term, SUSY with complex A-terms, etc.
- 3 PCT Observable $(\boldsymbol{\sigma} \cdot \mathbf{I})(\hat{\mathbf{k}} \cdot \mathbf{I})$
- 1. $\mathcal{L}_{\text{PCT}} = g_{\rho}^T \bar{N} \sigma^{\mu\nu} \tau^3 N \, \partial_{\mu} \rho_{\nu} + \dots$
- 2. Parents: parity-conserving but CP-odd four-quark $(\bar{q}\gamma_{\mu}q)(\bar{q}\gamma^{\mu}\gamma_{5}q)$.
- 3. UV: left-right symmetric models (W_R exchange), some vector leptoq

Back up slides

κ(J) uncertainties — Measured with (n, γ) angular distributions at ANNRI; current value $\kappa = 0.9 \pm 0.1$ in ¹³⁹La.

Question	20-sec answer
How do you avoid final-state interactions mimicking T?	Forward transmission has identical in/out states \Rightarrow by CPT, any fake phase is P-even. Null-test proven by Ryudin (1964) and Gudkov & Bowman (2014).
What about unknown resonance phases?	Ratio $\Delta \sigma^{PT}/\Delta \sigma^{P}$ cancels strong-phase uncertainty; statistical theory error < 3 %.
Lattice input?	Needed only to translate null into
Tensor alignment feasibility?	^127I, ^121Sb: EQM \approx 800 mb, align to P ₂ \approx 0.3 at 50 mK; cryo hardware exists (YES crystals).
Pseudomagnetic precession systematics?	Monitored with in-beam neutron spin-echo; <10 ⁻⁷ phase control already demonstrated in ^3He cell tests.