Echoes from the Fireball: What Femtoscopy Reveals at RHIC

Yevheniia Khyzhniak

The Ohio State University

CIPANP 2025

What can we measure?

- Femtoscopy measures so-called regions of homogeneity (phase space region of outgoing particles with similar velocity vector)
- We can probe different homogeneity regions by varying pairs' transverse momenta

- Momentum (p) is accessible in experiment
- Femtoscopy
- Femtoscopy allows one to explore:
 - >Size of the emission source
 - ≻Lifetime of source
 - ≻Emission duration
 - ≻System dynamics
 - ≻Source shape
 - ➢Orientation

Ann.Rev.Nucl.Part.Sci. 55 (2005) 357-402

Correlation femtoscopy procedure

 $C^{ab}_{\mathbf{P}}(\mathbf{q}) = rac{A^{ab}_{\mathbf{P}}(\mathbf{q})}{B^{ab}_{\mathbf{P}}(\mathbf{q})}$ Signal Background

Femtoscopic radii are extracted by fitting correlation function with Bowler-Sinyukov

$$C(q) = N[(1 - \lambda) + \lambda K(q)(1 + G(q))]$$

$$G(q) = e^{-\sum_{i,j=0,s} l (q_i q_j R_{ij}^2)^{\alpha/2}} + FSI$$

Phys. Lett. B 270 (1991) 69
Phys. Lett. B 432 (1998) 248

N- normalization factor $\lambda-$ correlation strength parameter K(q) - is a squared like-sign pion pair Coulomb wave-function integrated over a spherical Gaussian source $\alpha = 2 -$ Gaussian (standard approach in femtoscopy) or free parameter in "Levystable source" approach FSI – final state interaction

Fit using log-likelihood method

$$\chi^{2} = -2 \left[A ln \left(\frac{C(A+B)}{A(C+1)} \right) + B ln \left(\frac{A+B}{B(C+1)} \right) \right]$$
$$C = \frac{A}{B}$$

• Larger m_T pairs are emitted from smaller emission regions with less correspondence to the size of the entire fireball

- The λ (fraction of correlated pairs) of pions from long-lived resonances increases at lower energies assuming clearer source to study

PRC 92 (2015) 014904

• The λ (fraction of correlated pairs) of pions from longlived resonances increases at lower energies assuming clearer source to study

• The λ (fraction of correlated pairs) of pions from longlived resonances increases at lower energies assuming clearer source to study

• The λ (fraction of correlated pairs) of pions from longlived resonances increases at lower energies assuming clearer source to study

• Big uncertainties in the radii obtained from different experiments

Motivation to study source at lower energies

• The ratio R_{out}/R_{side} or their difference as a possible way to search for critical point

Ann. Rev. Nucl. Part. Sci. 46, 71 (1996)

 The ratio Rout/Rside or their difference as a possible way to search for critical point

Rout Rside Motivation to study source at lower energies

Levy-distributed sources

$$C(q) = N(1 - \lambda) + NK(q)\lambda exp\left[-\sum_{i,j=o,s\,l} \left(q_i q_j R_{ij}^2\right)^{\alpha/2}\right]$$

QM2025 Mate Csanad

N - normalization factor,

 λ - the correlation strength

K(q) accounts for Coulomb effect,

 $\alpha = 2$ – Gaussian (standard approach in femtoscopy) or free parameter in "Levy-stable source" approach

ď **STAR preliminary** α**(m_)=**α₀ 1.8 1.6 立 1.4 1.2 collider mode ຮ**°1.5** fxt mode STAR Run-11 preliminary Au+Au@√s_{NN}=200 GeV, π¹π¹ 0.8 1.45 0–10% Au+Au, $\pi^{\pm}\pi^{\pm}$ **30–40% Au+Au**, $\pi^{\pm}\pi^{\pm}$ 0.6 **0–10% Au+Au**, ππ 1.35 0.4 0–10% Au+Au, $\pi^{+}\pi^{+}$ 1.3 0.85+√s_{NN}^{-0.14} 300 350 200 250 10² 10

QM2025 Mate Csanad

Possible reasons for non-Gaussianity:

- Anomalous diffusion
- Critical behavior
- Jets
- Resonance decays
- Levy-walk

Pions at low energies

- Good statistics resolves tension between previous data
- Clear difference between π^+ and π^- source

PRC 92 (2015) 014904

CERES

* STAR

ALICE

E895

× NA49

6

5

-6

5

.4

1.2

0.8

13

R_{out} [fm]

Pions and kaons at ALL energies

Pions and kaons at ALL energies

Source of the charge difference

Source of the charge difference

- Default UrQMD (Cascade) 3.4
- UrQMD does not contain residual charge influence
- The double ratio of pions and kaons exhibits opposite trends, which is inconsistent with experimental results -> which gives distinguishing power

WPCF2023 Yevheniia Khyzhniak

≻Isospin effect

 $nn \rightarrow pn\pi^-$

 $pp \to pn\pi^+$

UrQMD Vs Data

• Majority of the effect (at least in the out and side directions) described by the Coulomb effect

Charged kaons

- Three-dimensional femtoscopic analysis reveals:
 - Extracted radii increase with collision energy
 - Decrease with transverse pair momentum
 - Are generally larger for kaons compared to pions under the same conditions
- UrQMD in good qualitative agreement with the data

Charged kaons

• Kaons are emitted later than pions at all energies!

Charged kaons

• Kaon radiation exhibits two maxima • The second maximum is caused by $K^*(892) \rightarrow \pi + K$ with a lifetime of 4-5 fm/c

Emitting source

Usual way of thinking

Tilted emitting source

Phys. Rev. C 111, 024902 (2025)

Tilted emitting source

• The 3D initial geometry of a non-central heavy-ion collision breaks the forward-backward symmetry by a "tilt" of the fireball with respect to the reaction plane ➢Azimuthally sensitive femtoscopy allows to measure

Phys. Rev. C 111, 024902 (2025)

Femtoscopy and elliptic flow

• In momentum space emission source extended in-plane

- In momentum space emission source extended in-plane
- Femtoscopy shows out-of-plane
 extension in the coordinate space ->
 stronger in-plane pressure gradients > leading to positive v₂

Femtoscopy and directed flow

• Same reasoning for v_1 existence = stronger pressure gradients along shorter axis of the tilted source?

Assuming tilted source

- Successfully described in models driven by pressure gradients (like v2) from tilted source
- Worse description at higher momenta for heavier species

Phys. Rev. C 106 (2022) 044907 EPJC 75, 406 (2015) J. High Energy Phys. 05 (2021) 279

Energy dependence of the tilt

- In trend with AGS and HADES data
- Drops with energy, consistent with the expectation that collisions become increasingly boost invariant
- Good agreement with UrQMD 3.4 ("cascade" mode)
- Slight difference between θ_{SL} and θ_{OL} tilts
- Good distinctive power between models

WWND2024 Yevheniia Khyzhniak

k_T dependence of the tilt in the experiment and UrQMD

• Larger k_T pairs are emitted from smaller emission regions at earlier times with less correspondence to the size and shape of the entire fireball

Strange Dibaryons

- (Strange) Dibaryons have never been found experimentally
- The possible formation channels:

(|S|=2)Dibaryon $\Leftrightarrow p + \Xi^-$ (|S|=3)Dibaryon $\Leftrightarrow p + \Omega^-$

(|S|=2)Dibaryon $\Leftrightarrow \Lambda + \Lambda$

• Hyperon-Nucleon (Y-N) and Hyperon-Hyperon (Y-Y) interactions provide important information to constrain the Equation-of-State and help to understand the inner structure of compact stars

• Data consistent with the model, which assume presence of the shallow bond in $p + \Omega^-$

Ratio of $p + \Omega^-$ at different centralities

	Spin ave.	Quintet	HAL QCD
f_0 (fm)	$-4.9^{+0.5}_{-0.7}$	$-4.3^{+0.4}_{-0.7}$	-3.4
<i>d</i> ₀ (fm)	$2.3^{+0.4}_{-0.5}$	$1.5^{+0.5}_{-0.7}$	1.3
BE (MeV)	$1.5^{+1.1}_{-0.6}$	$1.6^{+1.4}_{-0.5}$	2.3

Kenji Morita, et al., Phys. Rev. C 101, 015201 (2020)

Consistency with the model + negative extracted scattering length and |f0|> 2d0 (effective range) -> hints on existence of dibaryon $p + \Xi^-$

Summary from the recent femtoscopy studies

• Levy source

- Pion source is non-Gaussian and non-Gaussianity increases with energy
- Gaussian source
 - Positively and negatively charged pions (same for kaons) have different correlations and subsequently different extracted sizes of the source at all energies
 - Driven by Coulomb effect from residual source
 - And, possibly, by isospin effect
 - Kaons are emitted later than pions at all energies!
 - Driven by re-scattering channel: K*
 - Kaon source even more affected by resonances than pions
 - Measurement of the tilt of the source crucial for the reproduction of the directed flow
 - Tilt depend on energy: consistent with the expectation that collisions become increasingly boost invariant at high energies
 - Tilt depends on momentum
- First experimental evidences of the strange dibaryon