
EWMS in Action
A User’s Guide to Adaptive,
Extreme-Scale Workflows

Ric Evans-Jacquez
Research Software Engineer

UW-Madison / IceCube / WIPAC
HTC25 – June 2025

2

EWMS uses Condor to run
workflows containing

many, many short-lived tasks

How can the Event Workflow Management
System benefit me?

Event-Granular HTC Workflows

To be most efficient, we want to subdivide a

workflow into “smallest” unit of work, the event

➢ Multi-Messenger Astrophysics alerts

(IceCube and LIGO triggers)

➢ Astronomical observations (images)
➢ Cryogenic electron microscopy (cryo-EM)

data

➢ Optical Character Recognition on pages in a

book

➢ …

3

HTCondor is great at aggregating distributed

resources and orchestrating workflows, but…
➢ Imposes 1:1 job-task mapping

➢ Needs O(>30 min) jobs to be most efficient

○ Task lifetime >> Startup+Scheduling time

In contrast, events…

➢ Much shorter runtime per task

➢ 1:N job-task mapping

➢ Dynamic allocation of inputs and outputs

HTCondor’s Traditional Use

size = runtime

× 1000+

× 1000+

4

Condor is a massive bird, but we have Starlings

5

Condor-shaped flock of StarlingsAndean Condor

(not AI)

The First EWMS Application

6

IceCube Neutrino Observatory’s
Realtime Alert System

The IceCube Neutrino Observatory

is a cubic kilometer detector

located at the geographic South

Pole, and the premier facility for

identifying neutrinos > 10 GeV,

particularly > 1 TeV astrophysical

neutrinos.

Background
IceCube Neutrino Observatory

7

Where did it come from?

Need to know where to point

other telescopes for immediate

follow-up observations.

Background
A neutrino is detected by IceCube!

8

Most accurate and detailed directional reconstruction comes by

scanning across the sky in varying granularity: O(100k) total pixels

“night sky”

HEALPix algorithm9

IceCube’s Problem
Need to reconstruct a Sky Map

1. Preempt N HTCondor nodes for immediate

availability

2. Generate O(100k) events (5-tuples)

3. Group O(1k) events into N “input” object

➢ 1 job gets 1 object, O(1k) events

4. Submit to HTCondor for N jobs

5. Wait for every job to finish while collecting

N transferred output objects

6. Assemble resulting skymap

➢ Produce the most probable direction and error

IceCube’s Problem
The Original Solution

input

out out out

10
Are you using something similar?

IceCube’s Problem
The Three Realities of HTC

1. We have a heterogeneous and finite compute pool – you
cannot group input events efficiently ahead of time.

What if you didn’t have to?

2. Task processes / CPUs will fail – even tested software.

What if you didn’t have to rerun an entire job if the
very last event fails?

3. Less-than-ideal job availability is unavoidable.

What if you didn’t have to wait for your last job?
11

fun book… not an ad…

Today
EWMS Design

12

➢ EWMS is a domain-agnostic

system.

➢ IceCube uses EWMS with an

external domain-specific

server, called “SkyDriver”.

➢ SkyDriver tells EWMS to tell

HTCondor to run physics code.

Today
IceCube Outsources HTCondor to EWMS

IceCube’s App

EWMS

IceCube’s Realtime

Code

domain-specific

add-ons

13

Today
IceCube Outsources HTCondor to EWMS

14

Penguin-shaped flock of Starlings

¯_(ツ)_/¯

(also not AI)

Sounds neat… what do I need to do?

15

It’s all about event I/O

EWMS does not use HTCondor’s file-transfer system (for events)

➢ 1:N tasks are complex

➢ No dynamic scaling task per job

Instead, EWMS uses message passing (HTTP + RabbitMQ)

➢ Separates event I/O from job mechanics

○ Additional input(s) are given when needed

○ Outputs are immediately relayed in real-time

➢ Doesn’t care about fluxuations in job count

○ Can we increase/decrease number of jobs?

Event I/O
Dynamically-allocated inputs, outputs, and workforce

16

Starlings are not fed,
they forage

(still not AI)

Ack-last & fail-fast paradigm

❖ Acknowledge input event only when task is done

❖ MQ will redeliver to another worker when no ack

❖ “Dead Letter” queue for problem events

Backward compatible – invisible from user’s POV

❖ User code interfaces with files

Event I/O
Pilot-Based Workers

17

The Pilot’s built-in failover
mechanism makes the workflow
natively resilient to CPU crashes

A few of HTCondor's Exceptional Features:

➢ Guaranteed execution

➢ Extreme scalability

➢ Parallelization without reimplementation

➢ Success in heterogeneous environments

➢ Adaptable to user requirements

EWMS complements HTCondor

Paraphrased from the HTCondor Manual
18

If our system is not flexible to adopt,

then it won’t be used!

HTTP / REST user interface

➢ Standardized JSON input – auto-documented

○ Not unlike HTCondor submit syntax

○ Validation by JSON Schema & OpenAPI

➢ Multiple image versions available

○ Allows users to test customizations
(also scientific reproducibility)

○ Apptainer (optionally, Docker)

Interfacing with EWMS
Whether User or Bot, it’s the same

19

❖ Enormous space of options - millions of
potential variants

❖ Very small individual inference task

❖ Additional tasks can be added in
discovered regions of interest

“Neural network interpretation. (A) A UMAP projection of the latent space of the GB1
sequence convolutional network (CNN), as captured at the last internal layer of the network. In
this latent space, similar variants are grouped together based on the transformation applied by
the network to predict the functional score.” - from 10.1073/pnas.2104878118

Future CHTC Use Case #1
Using protein language model to drive engineering

- Ian Ross

https://www.pnas.org/doi/full/10.1073/pnas.2104878118

❖ Stream of new articles, each of which goes through
processing:
➢ Visual parsing (extract tables, figures, equations,

captions, …)
➢ Paragraph chunking and text embedding (for retrieval

augmented generation “ask-xDD” agent)

❖ Occasionally deploy new processing workflows or
applications across ~18M documents

❖ “Standard” approach: batch documents, submit
regularly
➢ Individual documents are O(min) for each processing

pipeline
➢ Some docs will stop progress on the batch, resulting in

need for re-bundling and re-submission

Future CHTC Use Case #2
Scientific literature processing and data-mining (xDD)

- Ian Ross

Future
Other Workflow
Geometries

Node ➡ Task Type
Edge ➡ Event Message Queue

Node Weight ➡ Task Priority (workforce size)
Edge Weight ➡ Event Frequency

PIs

➢ Miron Livny

➢ Brian Bockelman

➢ Benedikt Riedel

Software Engineering

➢ Ric Evans (me)

➢ Benedikt Riedel

➢ David Schultz

IceCube

➢ Tianlu Yuan

➢ Massimiliano Lincetto

➢ Claudio Kopper

➢ Erik Blaufuss

➢ Christina Lagunas

➢ Robert Stein

➢ Giacomo Sommani

➢ Angela Zegarelli

National Science Foundation

➢ OAC #2103963

➢ OPP #2042807
23

CHTC

➢ Brian Aydemir

➢ Ian Ross

Acknowledgements

Thank You!

24

SkyDriver-EWMS Architecture

25

CASE 1: Massive Scale CASE 2: Moderate Scale

Real-time Scans Historical Catalog & Simulation

Fast & Resource Intensive -> High Priority Steady/Predictable -> Lower Priority

➔ O(10k+) CPUs, spun up ASAP ➔ Varying # of CPUs, subject to availability

The Problem
Two IceCube Use Cases

26

SkyDriver – Worker / Scanner Client POV

27

