ARA **D**istributed Inference Experiments Flying HTCondor Over a Field of Wireless Dreams

Marty Kandes^{1,3}

Sarath Babu^{2,3} Zhibo Meng^{2,3} Hongwei Zhang^{2,3}

¹San Diego Supercomputer Center

²Iowa State University

³https://icicle.ai

Throughput Computing 2025 University of Wisconsin - Madison Howard Auditorium, Fluno Center Thursday, June 5th, 2025 09:25 - 09:45 CT

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

ARA Distributed Inference Experiments

Flying HTCondor Over a Field of Wireless Dreams

ARA Wireless Living Lab

ARA Distributed Inference Experiments

AraHaul Demonstration (with HTCondor)

Question & Answers

ARA Wireless Living Lab

- One of the U.S. National Science Foundation (NSF) Platforms for Advanced Wireless Research (PAWR).
- Technology focus on long-distance, high-capacity wireless backhaul and radio access network (RAN) platforms for rural broadband.
- Deployed and managed by the Center for Wireless, Communities, and Innovation (WiCI) at Iowa State University (ISU).
- ARA is an acronym for Agriculture and ruRAl communities.

https://arawireless.org

ARA Vision

- Experiment with advanced wireless technologies at-scale.
- Foster innovation in wireless solutions and applications.
- Address future challenges and opportunities in rural broadband. e.g., precision agriculture; community services

ARA System Overview

AraHaul is a multi-modal, multi-hop, wireless backhaul (x-haul) network for long-distance, high-capacity, point-to-point communication between nearby rural communities, farms, and the core ARA network at ISU.

ARA System Overview

AraRAN is a heterogeneous radio access network (RAN) for high-capacity, low-latency wireless communication between user equipment (UE) in the field and base stations (BS) at *AraHaul* sites.

ARA System Overview

AraCloud/AraSoft is an OpenStack-based platform that controls and manages access, configuration, scheduling, and provisioning of the resources deployed across ARA to support experimentation by researchers.

Current ARA Deployment

ARA's Phase 2 deployment currently spans approximately 500 km² near ISU, including campus, the City of Ames, local research and producer farms, and neighboring rural communities in central lowa.

AraHaul Platforms

Wilson Hall

Agronomy Farm

	Band	Frequency	Wavelength	Range	Capacity
AraOptical (FSO)	Near-IR	191.7 - 194.8 THz	1539 - 1564 nm	15 km	16 × 10 Gbps
Aviat WTM 4811	mmWave	81 - 86 GHz	3.49 - 3.70 mm	15 km	1 × 10 Gbps
		71 - 76 GHz	3.95 - 4.22 mm		
	$\mu Wave$	10.6 - 11.5 GHz	2.61 - 2.83 cm	20 km	2 x 1.5 Gbps
Hughes HL1120W	μ Wave	14.0 - 14.5 GHz	2.06 - 2.14 cm	1200 km	32 Mbps (up)
Eutelsat OneWeb		10.7 - 12.7 GHz	2.36 - 2.80 cm	LEO	195 Mbps (down)

AraHaul: Multi-Modal Wireless X-Haul Living Lab for Long-Distance, High-Capacity Communications

AraRAN Platforms: AraMIMO, AraSDR

Base Stations	Band	Frequency	Wavelength	Range	Capacity
Ericsson AIR 5322 B261	mmWave	27.5 - 27.9 GHz	10.8 - 10.9 mm	500 m	3 Gbps
Ericsson AIR 6419 B77G	μ Wave	3.45 - 3.55 GHz	8.5 - 8.9 cm	8.5 km	650 Mbps
Ettus USRP N320	μ Wave	3.4 - 3.6 GHz	8.3 - 8.8 cm	1.2 km	100+ Mbps
Skylark Faros v2	TVWS	539 - 593 MHz	0.51 - 0.56 m	10 km	100+ Mbps

User Equipment	Frequency	Wavelength	Capacity		
Quectel RG530F	600 MHz - 28 GHz	10 mm - 0.5 m	3.4/8.8 Gbps (up/down)		
Ettus USRP B210	70 MHz - 6 GHz	50 mm - 4.3 m	1.5 Gbps		
Skylark Faros v2 CPE	100 MHz - 6 GHz	50 mm - 3.0 m	40/250 Mbps (up/down)		

AraMIMO: Programmable TVWS mMIMO Living Lab for Rural Wireless AraSDR: End-to-End, Fully-Programmable Living Lab for 5G and Beyond (ロト (個) (E) (E) E) の(()

Other ARA Infrastructure

Agronomy Farm

Wilson Hall

イロト イロト イヨト イヨト 三日

ARA System Architecture

Design and Implementation of ARA Wireless Living Lab for Rural Broadband and Applications

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

ARA Distributed Inference Experiments (ADIx)

To demonstrate, characterize, and evaluate the use of distributed inference for computer vision tasks in rural and remote regions ...

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = のへで

ADIx Design: MLPerf Inference Benchmarks

https://mlcommons.org

MLPerf aims to be a representative benchmark suite for AI/ML that evaluates system performance to meet five high-level goals:

- Enable fair comparison of competing systems while still encouraging innovation.
- Accelerate progress through fair and useful measurement.
- Enforce reproducibility to ensure reliable results.
- Serve both the commercial and research communities.
- Keep benchmarking effort affordable so all can participate.

ADIx Design: MLPerf Inference Benchmarks

All benchmarks measure how fast systems can process inputs and produce results using a trained model. Each benchmark specifies:

- Task: Image Classification, Object Detection
- Model: Resnet50-v1.5, Retinanet
- Dataset: ImageNet (224×224), OpenImages (800×800)
- Quality: 99% of FP32 (76.46%), 99% of FP32 (0.3755 mAP)

ADIx Design: MLPerf Inference Benchmarks

MLPerf also specifies the required inference workload **scenarios** and how they must be implemented and measured.

ADIx Design: MLPerf Inference Benchmarks (Closed)

- LoadGen (LG): Generates traffic for scenarios (with QSL index)
- Query Sample Library (QSL): Loads (dataset) samples into memory
- System Under Test (SUT): Hardware and software to be measured

https://docs.mlcommons.org/mlcflow

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

ADIx Design: MLPerf Inference Benchmarks (Network)

• Query Dispatch Library (QSL): SUT proxy that runs on the LG system

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

ADIx Design: MLPerf Inference Benchmarks (Open)

If we break the rules, there is more compute to be had. What then might be possible?

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

ADIx Implementation

ADIx Implementation

ADIx Implementation

ADIx Implementation: Key HTCondor Features

- CONDOR_HOST: By default, ARA dynamcially allocates management IPs to resources each time you spin up a new experiment configuration; one IP need to know is helpful
- **Python bindings** imported as part of QDL to implement: (1) a direct high-thoughput batch (HTB) mode that distributes QSL samples to be processed by ORT-based SUTs; (2) warm start of FastAPI-based (ORT-backed) SUTs
- **Multi-homed support**: Most ARA systems will have multiple network interfaces in any given ADIx configuration
- **Condor Connection Broker**: Leverage compute resources beyond ARA in the future (e.g., Voyager's Habana inference nodes)

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

≣ ∽ ९ ୯

Containers - Ara Dashbo × +										_ = ×			
÷		😁 portal.	arawireless.	.org/ngdetails/C	S::Zun::Contai	ner/c4c365ed	b32a-45bc-9	3e5-66c5085	583af				
88	🛒 access		👌 blink	Chatgpt		b 🎧 github	🦊 gitlab	🜀 google		'ana 🛛 🧟 http	o4ever 🙆		
A	AC 🖿 AC	CESS • ICICLE	•										🌡 mckandes 👻
Projec	ct	~	Project /	Container / Con	tainers								
	Summary	>											
	Container	~	Back										
		Containers	Data	Center	_Com	puteN	ode_0	Compi	ute_0	001_A	CME		Refresh 💌
	Network	>											
	Orchestration	>	Overview	Logs	Console								
	Object Store	>	slot1@	AgronomyFa	rm-AraHau	l-Host-000	LI	NUX	X86_64	Unclaimed	Idle	0.000	63760
	Reservations	>	slot1@	DataCenter	-ComputeN	ode-Comput	e-001 LI	NUX	X86_64	Unclaimed	Idle	0.000	386400
Identi	ty	>	slot1@	WilsonHall	-AraHaul-I	Host-000	LI	NUX	X86_64	Unclaimed	Idle	0.000	63760
Data		>	0100	.29.2) Ti	ntal Owne	r Claimed	Unclaime	d Matched	Preemr	iting Dra	in Backfi	11 BkTd	le
			X86	64/LINUX	3	9 0		3 6)	0	0	θ	0
				Total	3	 Э Ө		3 6		Θ	0	θ	0
			icicle Name	@DataCente	r-Compute	Node-Compu	-:te-001 0p	\$ condor_ Sys	status Arch	State	Activity	/ LoadAv	Mem
			Actv	tyTime									
			slot1@ 0+00	AgronomyFa :21:57	rm-AraHau	l-Host-000	LI	NUX	X86_64	Unclaimed	Idle	0.000	63632
			slot1_ 0+00	1@Agronomyl :00:00	Farm-AraH	aul-Host-0	00 LI	NUX	X86_64	Claimed	Busy	0.000	128
			slot1@ 0+00	DataCenter :54:28	-ComputeN	ode-Comput	e-001 LI	NUX	X86_64	Unclaimed	Idle	0.000	386400
			slot1@ 0+00	WilsonHall :34:27	-AraHaul-I	Host-000	LI	NUX	X86_64	Unclaimed	Idle	0.000	63760
					otal Owne	r Claimed	Unclaime	d Matched	I Preemp	ting Dra	in Backfi	ll BkId	le
			X86_	64/LINUX	4	9 1		3 6					Θ
			4 - 4 - 2 -	Total	4	9 1	t- 001.	3 6					Θ
			Status: Ope	evatatente m	r-compute	voue-Compu	te-001:~	Ś					

- nac

≡ _ _ _ へ ()

Acknowledgements

https://icicle.ai

This work is funded by the Office of Advanced Cyberinfrastructure (OAC) in the Directorate for Computer and Information Science and Engineering (CISE) at the U.S. National Science Foundation (NSF) as part of the National AI Research Institute for Intelligent CyberInfrastructure with Computational Learning in the Environment (ICICLE) under OAC-2112606.

Acknowledgements

Platforms for Advanced Wireless Research

ARA is funded by the Division of Computer and Network Systems (CNS) in the Directorate for Computer and Information Science and Engineering (CISE) at the U.S. National Science Foundation (NSF) through its Platforms for Advanced Wireless Research (PAWR) program under CNS-2130889.

Additional funding and in-kind support for ARA has been provided by its PAWR industry partners and the National Institute of Food and Agriculture (NIFA) at the U.S. Department of Agriculture (USDA) through its Agriculture and Food Research Initiative (AFRI) under NIFA-2021-67021-33775.

Questions?

