
Unbreaking the bird: Debugging
Pelican client failures

condor_q -held | grep osdf

An AI-generated nightmare
courtesy of Copilot.

So you walked into the office the morning and checked on the
workloads that ran overnight.

Oh no! It looks like OSDF caused all sorts of errors overnight.

What do you do?!

N.b. – we’re on your side! Every morning we check in on how many
problems there were caused by OSDF on the previous day…

So your Pelican-power download failed…

12637464.20 XXXX 5/30 07:47 Transfer input files failure at the execution point using protocol osdf. Details:
Pelican Client Error: Attempt #3: from dtn-pas.kans.nrp.internet2.edu:8443: request failed (HTTP status 404):
server returned 404 Not Found (100ms elapsed, 300ms since start); Attempt #2: from osdf-uw-cache.svc.osg-
htc.org:8443: request failed (HTTP status 404): server returned 404 Not Found (0s elapsed, 100ms since start);
Attempt #1: from osdf1.chic.nrp.internet2.edu:8443: request failed (HTTP status 404): server returned 404 Not
Found (0s since start) (Version: 7.16.5; Site: NotreDame) (URL file = osdf:///ospool/ap40/data/XXXX/freesurfer-
v7.2.0.sif)|

12633237.34371217 XXXX 5/29 11:06 Transfer input files failure at execution point
slot1_4@glidein_431023_509537431@node077.cluster using protocol osdf. Details: Error occurred when querying
for metadata: Get "https://osg-htc.org/.well-known/pelican-configuration": read tcp 10.1.0.77:60654-
>104.21.71.171:443: read: connection reset by peer (URL file = osdf:///ospool/ap40/data/ XXXX /unzip)|

12635414.5 XXXXXXXXX 5/6 10:46 Transfer output files failure at execution point
slot1_1@glidein_25498_139089762@n3303.hyak.local using protocol osdf. Details: Pelican Client Error: failed
upload to ap40.uw.osg-htc.org:8443: Request failed (HTTP status 423) (100ms since start) (Version: 7.15.1; Site:
UW-IT) (URL file = osdf:///ospool/ap40/data/XXXXXXXX/Leukemia_project/mapped_reads.tar.gz)|

So your Pelican-power download failed…

12633237.35036992 XXXXXX 5/30 03:57 Transfer input files failure at execution point
slot1_15@glidein_54145_51861151@n3402.hyak.local using protocol osdf. Details: Pelican Client Error: Attempt
#2: from dtn-pas.denv.nrp.internet2.edu:8443: failed to verify size of downloaded file on disk: file size on disk
28671565b does not match expected size 28655181b (2m8.7s elapsed, 4m18.7s since start); Attempt #1: from
ncar-cache.nationalresearchplatform.org:8443: Transfer.SlowTransfer Error: Error code 6002: cancelled transfer,
too slow; detected speed=27.4 KB/s, total transferred=6.6 MB, total transfer time=2m10.001s (2m10s since start)
(Version: 7.16.5; Site: UW-IT) (URL file =
osdf:///ospool/ap40/data/XXXXXX/chunkout/nt_virus_chunks/nt_virus_subset_zkwt)|

12633237.34981197 XXXXXX 5/30 02:23 Transfer input files failure at the execution point using protocol osdf.
Details: Pelican Client Error: Attempt #3: from dtn-pas.kans.nrp.internet2.edu:8443: dial tcp
[2001:468:2807::5]:8443: connect: connection refused (10s elapsed, 30s since start); Attempt #2: from dtn-
pas.hous.nrp.internet2.edu:8443: dial tcp 163.253.29.19:8443: i/o timeout (10s elapsed, 20s since start); Attempt
#1: from osg-houston-stashcache.nrp.internet2.edu:8443: dial tcp 163.253.74.2:8443: i/o timeout (10s since start)
(Version: 7.16.5; Site: UChicago) (URL file = osdf:///ospool/ap40/data/ XXXXXX/unzip)|

Mea Culpa…

Yes, we have work to do to improve the error messages…

Yes, we are putting structured data in an unstructured string…

Yes, presenting the user with an error message they can resolve is a
problem in the first place…

Yes, we should have better tools to aggregate/filter these messages…

What we want to avoid

• The Pelican team wants to provide enough structured failure
information about what happened that you avoid the trap of:

 “Let me rerun is using pelican object copy --debug
 and reading the tea leaves”

Thinking Logically about Failures

Downloading one byte of data requires 2-3 services to interact
successfully.

Understanding the basic architecture is essential for understanding
what’s gone wrong:

• Service discovery: Used to find the director service.

• Director: Contacted by the client to discover a service for performing
the desired operation.

• Cache: Selected by the director, sends the object to the client.

• Origin: On cache miss, sends the object to the cache
• For uploads, contacted directly by the client.

Jupyter Notebook

Pelican Client

8

Researcher uses a Jupyter Notebook to create a visualization that requires two objects:

OSDF Cache

OSDF Origin
 (NCAR)

OSDF Origin
(AWS-Opendata/US-west-2)

OSDF Director
(Namespace)

NCAR AWS-Open
Data

US-West-2

 cmip6-pds/CMIP6/CFMIP/NCAR/CESM2/aqua-4xCO2/r1i1p1f1/Amon/co2mass/gn/v20190816 @ AWS Open Data Object Store

rda/harshah/osdf_data/HadCRUT.5.0.2.0.analysis.summary_series.global.monthly.zarr @ NCAR Object Store NCAR/ rda/harshah/osdf_data/HadCRUT.5.0.2.0.analysis.summary_series.global.monthly.zarr

AWS-OpenData/US-West-2/cmip6-pds/CMIP6/CFMIP/NCAR/CESM2/aqua-4xCO2/r1i1p1f1/Amon/co2mass/gn/v20190816

[1] Pelican Get (OSDF, NCR/…

[2] Pelican Get (OSDF, AWS-…

[3] Visualize (…

Picking apart a hold message

12633237.35036992 XXXXXX 5/30 03:57 Transfer input files failure at execution point slot1_15@glidein_54145_51861151@n3402.hyak.local
using protocol osdf. Details: Pelican Client Error: Attempt #2: from dtn-pas.denv.nrp.internet2.edu:8443: failed to verify size of downloaded file
on disk: file size on disk 28671565b does not match expected size 28655181b (2m8.7s elapsed, 4m18.7s since start); Attempt #1: from ncar-
cache.nationalresearchplatform.org:8443: Transfer.SlowTransfer Error: Error code 6002: cancelled transfer, too slow; detected speed=27.4
KB/s, total transferred=6.6 MB, total transfer time=2m10.001s (2m10s since start) (Version: 7.16.5; Site: UW-IT) (URL file =
osdf:///ospool/ap40/data/XXXXXX/chunkout/nt_virus_chunks/nt_virus_subset_zkwt)|

Information about the transfer:
• Host: n3402.hyak.local
• Site: UW-IT
• Pelican Version: 7.15.6
• URL: osdf:///ospool/ap40/data/…

Which do you think is useful?

Picking apart a hold message

12633237.35036992 XXXXXX 5/30 03:57 Transfer input files failure at execution point slot1_15@glidein_54145_51861151@n3402.hyak.local
using protocol osdf. Details: Pelican Client Error: Attempt #2: from dtn-pas.denv.nrp.internet2.edu:8443: failed to verify size of downloaded
file on disk: file size on disk 28671565b does not match expected size 28655181b (2m8.7s elapsed, 4m18.7s since start); Attempt #1: from
ncar-cache.nationalresearchplatform.org:8443: Transfer.SlowTransfer Error: Error code 6002: cancelled transfer, too slow; detected
speed=27.4 KB/s, total transferred=6.6 MB, total transfer time=2m10.001s (2m10s since start) (Version: 7.16.5; Site: UW-IT) (URL file =
osdf:///ospool/ap40/data/XXXXXX/chunkout/nt_virus_chunks/nt_virus_subset_zkwt)|

If the Pelican client considers the error non-fatal, it’ll make 3 attempts to download an object. From above:

Attempt #1:
Service: ncar-
cache.nationalresearchplatform.org:8443
Error: Transfer.SlowTransfer Error: Error
code 6002: cancelled transfer, too slow;
detected speed=27.4 KB/s, total
transferred=6.6 MB, total transfer
time=2m10.001s.
Timing: 2m10s since start

Attempt #2:
Service: dtn-
pas.denv.nrp.internet2.edu:8443
Error: failed to verify size of downloaded
file on disk: file size on disk 28671565b
does not match expected size 28655181b
Timing: 2m8.7s elapsed, 4m18.7s since
start

The second attempt was considered fatal!

Step one: Client finds a service

• The client first discovers the location of the director service from a
static file hosted on CloudFlare.

32684753.93699 XXXXXX 5/31 11:08 Transfer output files failure at execution point
slot1_7@glidein_48968_35485290@n3353.hyak.local using protocol osdf. Details: Federation metadata
discovery failed with HTTP status 502. Error message: Cloudflare encountered an error processing this
request: Bad Gateway (URL file = osdf:///ospool/ap20/data/XXXXXX/ClusterResult0to50_93405.RData)|

• The client asks the director to select a service (cache) to do the work.

32684753.26096 XXXXXX 5/28 06:31 Transfer input files failure at execution point
slot1_11@glidein_1199_243426792@compute38 using protocol osdf. Details: failed to get namespace
information for remote URL osdf:///ospool/ap20/data/XXXXXX/Result_31513.RData: error while querying the
director at https://osdf-director.osg-htc.org: Get "https://osdf-director.osg-
htc.org/ospool/ap20/data/ahl/GridGraphs/Result_31513.RData": dial tcp [2607:f388:2200:c3::3]:443: connect:
network is unreachable (URL file = osdf:///ospool/ap20/data/XXXXXX/Result_31513.RData)|

What needs to happen to send one byte?

For a given cache, what needs to work to send a single byte:

• DNS lookup of the service name.

• Establish TCP connection from client to server.

• TLS handshake.

• Client sends HTTP request to server.

• Server sends HTTP response headers.

• Server sends one byte of data.

How can this go wrong?!?

DNS, TCP, TLS, HTTP

dial tcp: lookup fdp-d3d-cache.nationalresearchplatform.org on 10.24.255.254:53:
server misbehaving

dial tcp [2607:f388:2200:c3::3]:443: connect: network is unreachable

net/http: TLS handshake timeout

timeout waiting for HTTP response (TCP connection successful)

DNS:

TCP:

TLS:

HTTP:

DNS, TCP, TLS, HTTP

dial tcp: lookup fdp-d3d-cache.nationalresearchplatform.org on 10.24.255.254:53:
server misbehaving

dial tcp [2607:f388:2200:c3::3]:443: connect: network is unreachable

net/http: TLS handshake timeout

timeout waiting for HTTP response (TCP connection successful)

DNS:

TCP:

TLS:

HTTP:

Text generated by OS

Text generated by Go (programming language) runtime

Text generated by Pelican team

One byte went through – now what?

• Once a HTTP/1 server sends its response headers, it must send the full
body.
 … what happens if there is a read error on byte 2?

• There is no “post-header” error signal. Only option is for the HTTP server
to abruptly close the connection: the dreaded EOF (“end of file”) error.

Attempt #2: from dtn-pas.hous.nrp.internet2.edu:8443: unexpected EOF (4s elapsed, 14.1s since start)

The following are identical in HTTP/1:

• The origin encountered a read error.

• The cache encountered a read error.

• There was a network connectivity issue at
the client.

Do you want to debug the network
connectivity at every possible client

location?!?

A small tweak on HTTP

• To help differentiate between failure cases, we allow the Pelican client
to indicate an error after the download starts (opt-in).
• Translates to an error message like this:

transfer error: Unable to read (...Path...); timer expired

A tweak on HTTP

• To help differentiate between failure cases, we allow the Pelican client
to indicate an error after the download starts (opt-in).
• Translates to an error message like this:

transfer error: Unable to read (...Path...); timer expired

 Writing error messages are hard!
In English, this translates to “origin

timed out when bytes were requested
by the cache”.

Back to the beginning

Is “condor_q –held | grep osdf” good?

• Grep’ing through a bunch of error messages to poke at failures
randomly is not particularly structured thinking!

What are some better approaches? Ideas:

• Use ‘condor_history’ to view individual ClassAds.

• Find a friend running ElasticSearch and “condor_adstash”

condor_history knows all!

• The “-transfer-history”
flag allows you to pick
through all the individual
attempts.

• You’re welcome to
attempt to be a
“command line junkie” to
script this output!

condor_history knows all!

• The “-transfer-history”
flag allows you to pick
through all the individual
attempts.

• You’re welcome to
attempt to be a
“command line junkie” to
script this output!
• One default output

method is JSON which is
particularly scriptable.

Not everyone loves the CLI, Brian!

• More of a database
person?

• ElasticSearch
provides a document-
centric data model
from a browser
environment.

Not everyone loves the CLI, Brian!

• More of a database
person?

• ElasticSearch
provides a document-
centric data model
from a browser
environment.

So what did we learn?

Some thoughts…

1. Don’t bother memorizing error messages. We are trying to constantly change
and improve them.
1. Instead: complain to us about how we can communicate better!

2. Think through the logical steps of what Pelican is doing. Where, precisely, did
the error happen?
1. Director versus a cache?
2. DNS, TCP, TLS, or HTTP?
3. Before bytes moved or after?
4. Which can you control versus just retry?
5. The Pelican signals to HTCondor when it believes the error is retryable.

3. Let HTCondor run the transfer so you can state your retry policy.
4. Spend more time thinking about aggregate errors and less about the individual

failures.
5. Reach out to the Pelican team with ideas for better tools!

Questions?
This project is supported by the National Science Foundation under Cooperative
Agreements OAC-2331480. Any opinions, findings, conclusions or
recommendations expressed in this material are those of the authors and do not
necessarily reflect the views of the National Science Foundation.

	Slide 1: Unbreaking the bird: Debugging Pelican client failures
	Slide 2: condor_q -held | grep osdf
	Slide 3: So your Pelican-power download failed…
	Slide 4: So your Pelican-power download failed…
	Slide 5: Mea Culpa…
	Slide 6: What we want to avoid
	Slide 7: Thinking Logically about Failures
	Slide 8: Researcher uses a Jupyter Notebook to create a visualization that requires two objects:
	Slide 9: Picking apart a hold message
	Slide 10: Picking apart a hold message
	Slide 11: Step one: Client finds a service
	Slide 12: What needs to happen to send one byte?
	Slide 13: DNS, TCP, TLS, HTTP
	Slide 14: DNS, TCP, TLS, HTTP
	Slide 15: One byte went through – now what?
	Slide 16: A small tweak on HTTP
	Slide 17: A tweak on HTTP
	Slide 18: Back to the beginning
	Slide 19: Is “condor_q –held | grep osdf” good?
	Slide 20: condor_history knows all!
	Slide 21: condor_history knows all!
	Slide 22: Not everyone loves the CLI, Brian!
	Slide 23: Not everyone loves the CLI, Brian!
	Slide 24: So what did we learn?
	Slide 25: Some thoughts…
	Slide 26: Questions?

