
Placement Tokens
Capability-Based Authorization for Job Placement

Mátyás Selmeci
HTC25 — June 2nd, 2025

1



Introduction

● Experimental work in the area of authorization

● Making it easier to grant, audit, and revoke access to the job 
placement services (submit, remove, examine, modify jobs 
and lists of jobs) that an Access Point provides

2



Motivation

● Consider a classroom environment
● 30 domain science students for a semester-long class
● Need access to HTC to do their work
● Not familiar or comfortable with the command line
● Don't need shell access on a Unix machine
● Don't need yet another username/password to remember

3



Goals

● Grant students access to the AP's services for the duration of 
the class

● Revoke the access at the end of the class

● Not require an account on the AP with privileges they won't 
use

4



Current state

● Placement does not require logging in to the AP (remote 
placement/"remote submit") but has limitations

● Job "ownership" in the queue is linked to OS user

● A user can't place jobs without their own OS account at the AP

● AP admin must:
○ Provision an account when a new user joins
○ Deprovision the account when the user leaves
○ Create and give the user a credential for remote placement

5



Improvements to make

"AP User" is already a first-class concept in HTCondor — 
HTCondor has its own user database, but the user still needed to 
be linked to an existing OS account with the same name

1. Unlink the AP User from the OS account
○ Create "generic accounts" to own processes and files for jobs in the 

queue
○ Dynamically associate AP Users with accounts as needed (like "slot 

users")

2. Give the user a way to obtain credentials by themselves

6



Improvements to make

"AP User" is already a first-class concept in HTCondor — 
HTCondor has its own user database, but the user still needed to 
be linked to an existing OS account with the same name

1. Unlink the AP User from the OS account
○ Create "generic accounts" to own processes and files for jobs in the 

queue
○ Dynamically associate AP Users with accounts as needed (like "slot 

users")

2. Give the user a way to obtain credentials by themselves

7



Self-service credentials? Let's consider why and how

8



Who needs authorization?

● The user needs authorization?

9



Who What needs authorization?

● The user needs authorization?

● The user's program needs authorization?

10



Who What needs authorization?

● The user needs authorization?

● The user's program needs authorization?

● Some of the user's programs need authorization?

11



Who What needs authorization?

● The user needs authorization?

● The user's program needs authorization?

● Some of the user's programs need authorization?

● Some of the user's programs need some kind of 
authorization

12



● Not all programs need access to the same things

● Not all programs should be given access to the same things

● Least Privilege: Give programs only the access they need to 
do their jobs

● Already a model for that: Capabilities

13



Capabilities

● A Capability is some object ("token") that provides the bearer 
the authorization to perform a certain set of actions on a 
certain resource

● Capabilities can be copied and delegated — user to program, 
program to program, user to user

● Holding the Capability should be sufficient to grant 
authorization for the actions — the identity of the bearer 
should not matter

14



Early attempt: IDTOKENs
• HTCondor already had a form of token — IDTOKENs — but they are 

not real capabilities 

• IDTOKENs contain the identity of the bearer; that identity is checked 
against HTCondor's access controls when the token is used

• e.g. the token's "subject" must be in ALLOW_WRITE and cannot be in 
DENY_WRITE

• IDTOKEN "scopes" can be used to further restrict the bearer's access 
but it's still the identity that determines access

• Token creation not recorded (except in text log)

15



From IDTOKENs to Placement 
Tokens

• Let's improve on this: make a "Placement Token" that behaves 
more like a pure capability

• Once issued, the ID of the bearer ("subject") will not matter for 
authorization

• The ID will not get checked against ALLOW_WRITE et al. If the 
token says the bearer can write, they can write

• Need more care when issuing tokens — and keeping track of them

16



From IDTOKENs to Placement 
Tokens

• Create a dedicated daemon for making placement tokens: the 
PlacementD

• Create a table of user names with what authorizations they 
should be able to acquire

• Create a database for keeping track of the created capabilities

17



From IDTOKENs to Placement 
Tokens

• Only the PlacementD will make placement tokens

• The PlacementD will not create a token for a user that is not in its 
table

• The PlacementD will not create a token for a user whose access 
has expired (in the table)

• The PlacementD will not create a token with a privilege that the 
user is not listed as being allowed to have (in the table)

18



From IDTOKENs to Placement 
Tokens

• The PlacementD will record in its database who requested the 
capability, what AP user it's for, what authorizations it has, 
when it will expire, etc.

• The SchedD will read from the database when determining 
whether to allow an action

• Removing the token's entry from the database invalidates the 
token — no token without a record

19



Self-Service Capabilities

● AP admin does not know which programs the user will run

● AP admin does not know which programs will need which 
permissions

● User is in a better position to know these things, so user 
should be able to obtain authorizations by themselves

20



Placement Website
● Web frontend for the PlacementD
● User logs in via their campus Identity Provider (Single Sign-On)
● Identity Provider gives the website a name for the user

21

Placement
Website

Access Point

PlacementD
SchedD

(and other 
daemons)

󰳕
User w/ browser

🔓
Identity 
Provider



Table-Based Access Control
The PlacementD's table is 
keyed by the username 
given by the identity 
provider.

Controlling who is allowed 
to get what capability is 
sufficient for controlling 
access.

22

User name from 
Identity Provider

AP User Authorizations Expiration Date

mselmeci@wisc.edu matyas READ, WRITE, 
INSTRUCTOR

2038-01-18



Table-Based Access Control
To handle our class of 30, 
appending the class list to the 
table with the appropriate 
authorizations and expirations is 
enough.

No need to create accounts (we 
can rely on the campus ID 
provider), no need to deprovision 
afterward (the PlacementD will not 
give them tokens lasting past their 
expiration date)

23

User name from 
Identity Provider

AP User Authorizations Expiration Date

mselmeci@wisc.edu matyas READ, WRITE, 
INSTRUCTOR

2038-01-18

steve@wisc.edu student1 READ, WRITE 2025-12-31

alice@wisc.edu student2 READ, WRITE 2025-12-31

... ... ... ...



Table-Based Access Control

Moving away from 
knob-based access control 
to table-based access 
control opens the door for 
custom, more granular 
authorization.

24

User name from 
Identity Provider

AP User Authorizations Expiration Date

mselmeci@wisc.edu matyas READ, WRITE, 
INSTRUCTOR

2038-01-18

steve@wisc.edu student1 READ, WRITE 2025-12-31

alice@wisc.edu student2 READ, WRITE 2025-12-31

... ... ... ...



Summary
• A self-service method of obtaining access to AP services eases the 

burden of admins and students for the classroom / instructional use case

• Safely allowing that requires a more structured approach to credential 
management

• Capabilities (as implemented with Placement Tokens) lets us take access 
control out of config files and put it into tables

• The PlacementD lets us control and track creation of capabilities, and its 
web frontend provides a user-friendly method of obtaining capabilities

25



Acknowledgements and thanks

• Todd Tannenbaum
• Jaime Frey
• Miron Livny

This work is supported by NSF under Cooperative Agreement 
OAC-2030508 as part of the PATh Project. Any opinions, findings, and 
conclusions or recommendations expressed in this material are those 
of the author(s) and do not necessarily reflect the views of the NSF.

26

https://www.nsf.gov/div/index.jsp?div=OAC
https://www.nsf.gov/awardsearch/showAward?AWD_ID=2030508
https://path-cc.io/

