

Mapping the Zymomonas mobilis interactome

Sameer D'Costa Scientist, Computational Biology Group Throughput Computing 2025 (June 5th)

Introduction

Who, What, Why

Introduction

- Scientist at Great Lakes Bioenergy Research Center (GLBRC at WEI)
 - Computational Biology Group (AI/ML)
- GLBRC mission
 - Creating biofuels and bioproducts
 - from non-food plant biomass
 - economically viable
- Zymomonas mobilis (Bacteria)
 - Really good at turning sugar into alcohol
 - Engineer for industrial use
 - What do the genes do?

Homo sapiens - Oxidative phosphorylation

https://www.kegg.jp/pathway/hsa00190

Zymomonas mobilis Electron Transport Chain

What is the next complex in this chain?

- This is a really hard problem to solve computationally
 - ~2k genes encoding proteins
 - \circ What do they all do?
 - Which proteins form complexes with other proteins?
- We have a few things in our favor
 - Predict which genes are localized to membranes or periplasm ~580
 - SignalP 6.0 and DeepTMHMM (CPU or GPU)
 - Predict individual protein structures and complexes
 - AlphaFold 3 (Google Deepmind) (data prep on CPU but inference on GPU)

AF3 predicts all Z. mobilis protein structures

- Predicting all ~2k single protein structures took a week at CHTC/GLBRC
 - Data pipeline (5 days on CPUs) searches 650GB databases for each protein sequence to create alignments
 - Inference pipeline (1.5 days on GPUs) select GPU minimum memory based on sequence size
 - Apptainer container ~3GB

AF3 can predict complexes, if precisely specified

GREAT LAKES BIOENERGY RESEARCH CENTER

The problem is still too hard computationally

- No idea what the complexes are
- PPI (protein-protein interactions) subnetworks should allow us to brute-force predict complexes with AF3
- Expect ~2k actual PPIs among ~2M possible
- It will be hard to find all of them
- Hail Mary!
- CytC will form a complex with a new complex
- If not,
 - Run experiments guided by computational results
 - Save novel complexes for future work at GLBRC

Computational Plan

Deep learning to compute complexes in Z. mobilis

SCIENCE • 11 Nov 2021 • Vol 374, Issue 6573 • DOI: 10.1126/science.abm4805

Protein interaction networks revealed by proteome coevolution Science 365, 185-189 (2019)

Qian Cong^{1,2}, Ivan Anishchenko^{1,2}, Sergey Ovchinnikov³, David Baker^{1,2,4*}

- Bacteria have more genomic data available than eukaryotes
- Complexes are simpler
- Interacting partners are closer in the genome

Workflow

Acknowledgements

- Jacob Eckmann
- Kevin Myers
- Mike Place

- CHTC facilitation team, HTCondor
 - Christina Koch
 - Andrew Owen
- AlphaFold 3 pipeline is at

https://github.com/sameerd/alphafold3/tree/hpc/hpc#running-alphaf old3-on-chtc

• Thanks to Patricia Tran for documentation and additional scripts

