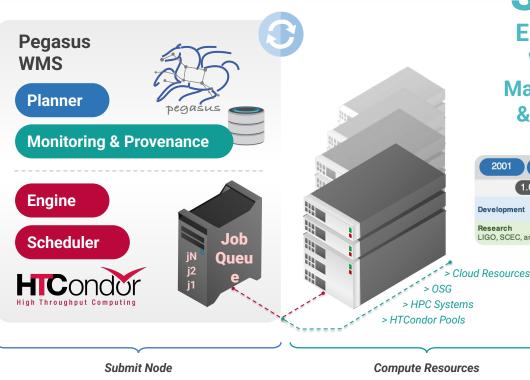
Pegasus WMS Deployments in ACCESS and NAIRR Pilot

Mats Rynge University of Southern California Information Sciences Institute

Supported by NSF #2138286

APs: Deployments ACCESS Pegasus PSC Neocortex/Bridges2 Purdue Anvil Composable System

EPs: Resource Provisioning TestPool HTCondor Annex IU Jetstream2 Cloud pegasus-glidein



Pegasus Workflow Management

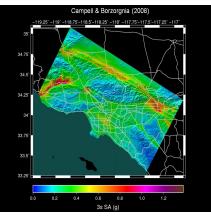
- Pegasus in practice
- Laser Interferometer Gravitational Wave Observatory (LIGO) develops large scale analysis pipelines used for gravitational wave detection.
- Southern California Earthquake Center (SCEC) CyberShake project generates hazard maps using hierarchical workflows.
- The XENONnT project uses Pegasus for processing and monte carlo workflows, searching for dark matter

System End to End Workflow Management & Execution

- > Develop portable scientific workflows in Python, Java, and R
- Compile workflows to be run on heterogeneous resources
- Monitor and debug workflow execution via CLI and web-based tools
- Recover from failures with built-in fault tolerance mechanisms
- Regular release schedule incorporating latest research and development

Research data data cloud MPI-based workflow Real time performance metadata data	2001 2003		2005	2007		2009	2	011		2013	2015	2017	2018	2020
Development for GT4 clustering AWS workflows engine dashboard manager containers of APIs Research data data cloud MPI-based workflow Real time performance metadata data	1.0 1.1	1.2	1.3	1.4 2	.0 2.1	2.2 2.3	2.4 3.0	3.1	4.0 4.1	4.2 4.3 4.4	4.5	4.6 4.7	4.8 4.9	5.0
	Development		and the second			and the second					a construction		and the second sec	
	Research LIGO, SCEC, and others		p algorithm								mance			

The XENONnT detector


-0.02s

LIGO observation

of collidina

black holes

Hazard map indicating maximum amount of shaking at a particular geographic location generated from SCEC's CyberShake Pegasus workflow

ACCESS Researcher Support Services

Â

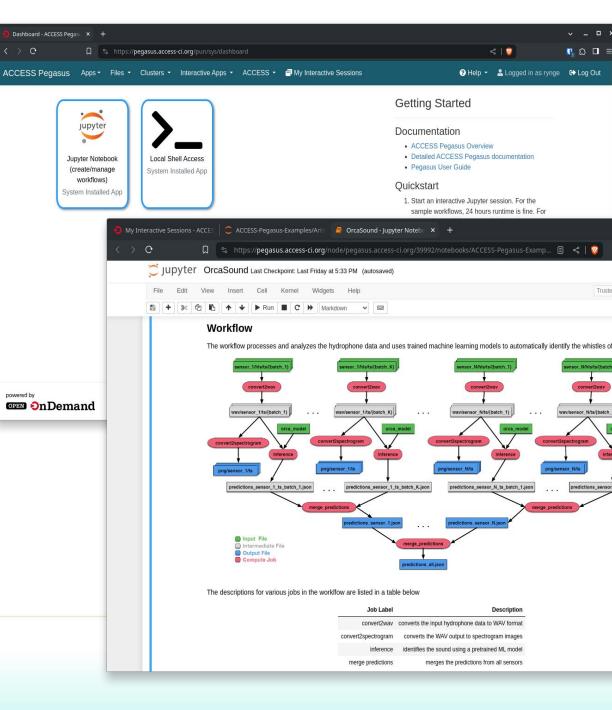
- Enable innovative research through equitable and scalable support
- Four tiers of support
- Tools, growing knowledge base
- Match-making with experts
- Student engagement
- Engagement from community
- CSSN incentives

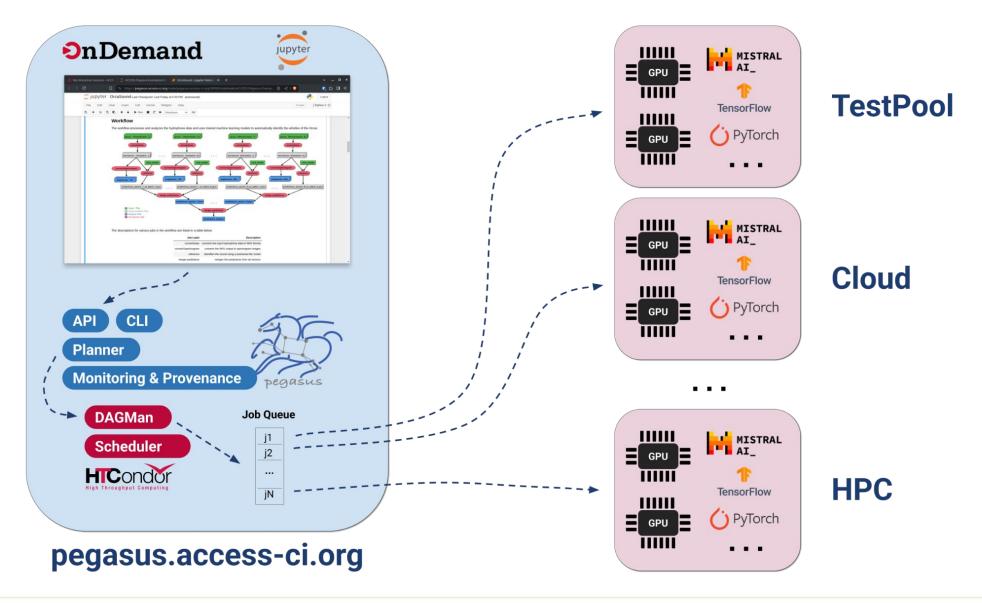
https://support.access-ci.org

TIER 1

R Easy to Use Tools ACCESS ONDEMAND & PEGASUS

ACCESS Pegasus

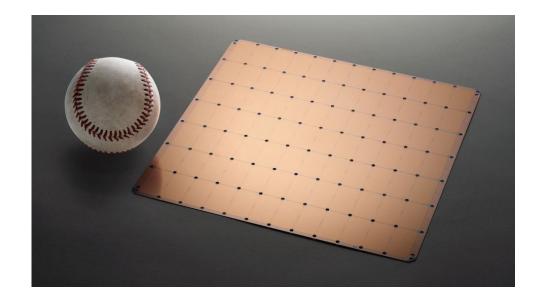

- Open Ondemand
- Jupyter
- Pegasus


ACCESS

Support

- HTCondor AP/CM
- CILogon / ACCESS IdP

https://pegasus.access-ci.org



AI Workflows on PSC Neocortex

Enable complex workflows with mixed job types: ML jobs to Neocortex, and non-ML jobs to Bridges2

- Powerful AI computational resource featuring 2 Cerebras CS-2 systems
- Developed an exemplar Cerebras modelzoo training workflow using TensorFlow

Purdue Anvil Composable Subsystem

- Kubernetes / Rancher
- CILogon (allocation required)
- JupyterLab configured with Slurm, shared filesystems
- HTCondor, batch GAPH, Pegasus

Welcome to the Anvil Notebook Service

https://notebook.anvilcloud.rcac.purdue.edu/

EPs: Resource Provisioning

Resources: Multi-core Compute

Anvil (Purdue) - 1,000 AMD Milan nodes, 128 cores per node, large memory nodes available

Bridges-2 (PSC) - 504 AMD Rome nodes, 128 cores per node, large memory nodes available; extreme memory (4 TB) nodes allocated separately

DARWIN (U Delaware) — Analysis-oriented AMD Rome nodes with 0.5 TB, 1 TB, and 2 TB memory options

Delta (NCSA) - 124 AMD Milan nodes, 128 cores per node

Expanse (SDSC) - 728 AMD Rome nodes, 128 cores & 1 TB NVMe per node

KyRIC (U Kentucky) - Five large-memory (3 TB, 6 TB) nodes, 300 TB storage

Stampede 3 (TACC) - 1,858 Intel Xeon CPU Max nodes

Resources: GPU Computing

Anvil GPU (Purdue) - 16 nodes, 4 NVIDIA A100 GPUs each

Bridges-2 GPU (PSC) - 24 nodes, 8 NVIDIA V100 GPUs & 7.68 TB NVMe per node

Neocortex (PSC) - 2 Cerebras CS-2 servers each with a Cerebras Wafer Scale Engine (WSE-2)

DARWIN GPU (U Delaware) — Large-memory nodes with three different GPU architectures: AMD MI50, NVIDIA T4 & V100

Delta GPU (NCSA) - 4 node configs: 100 nodes w/ 4x A100s; 100 w/ 4x A40 GPUs; five w/ 8x A100s; one w/ 8x AMD MI100 GPUs

Expanse GPU (SDSC) - 52 nodes, 4 NVIDIA V100 GPUs each

Jetstream2 (Indiana U) - 90 nodes with 4x A100 GPUs

Resources: Novel Computing

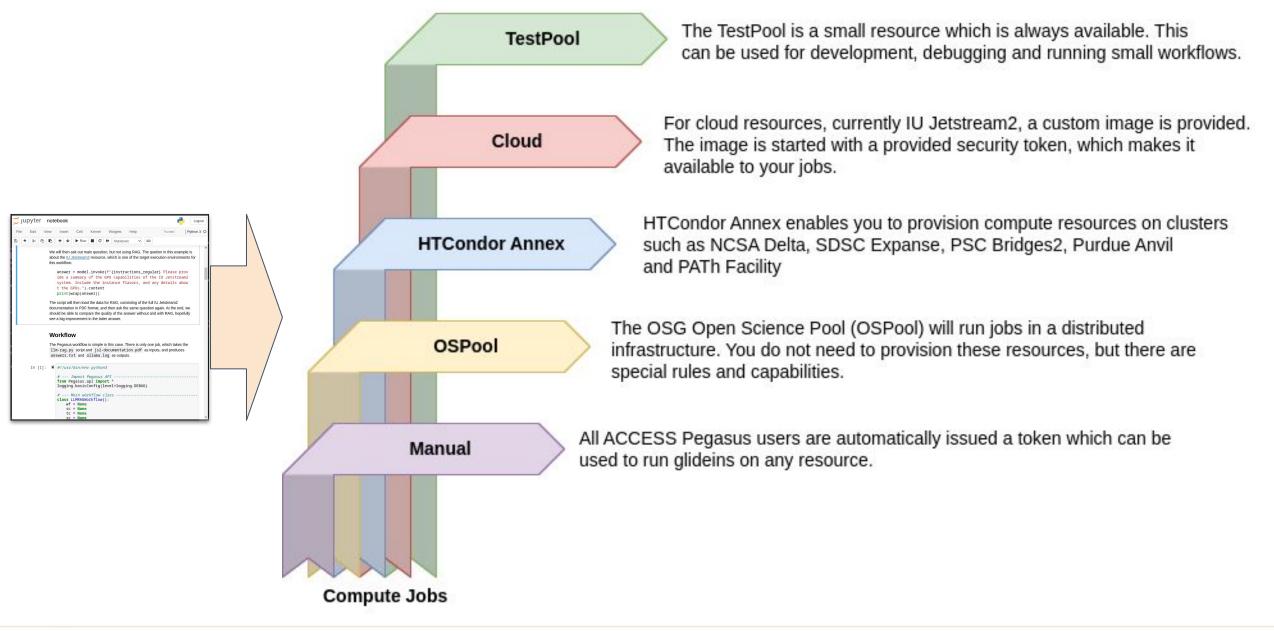
ACES (Texas A&M U) — Composable PCIe fabric with Intel Sapphire Rapids cores, Graphcore IPUs, NEC Vector Engines, Intel Max GPUs, Intel FPGAs, Next Silicon co-processors, NVIDIA H100 GPUs, Intel Optane memory

FASTER (Texas A&M U) — 180 nodes on a composable fabric, 2x Intel Ice Lake processors each, 260 NVIDIA GPUs (five different architectures)

Jetstream2 (Indiana U) — Cloud environment with AMD Milan nodes, and 90 nodes with 4x A100 GPUs

Hive (Georgia Tech) — 484 Intel Cascade Lake nodes. No allocation necessary for Hive Gateway access!

Ookami (Stony Brook U) – 176 nodes with Riken/Fujitsu A64FX processors; additional nodes with AMD Milan, Thunder X2, and Skylake/V100 architectures


Open Science Pool (PATh) — High-throughput computing environment leveraging fair-share access to contributed compute capacity

Voyager (SDSC) — Habana Gaudi training and inference processors. Kubernetes

Mostly allocation

More diverse catalog then in the past

Helps users with an ACCESS account but no allocation explore the capability

Small amount of compute resources attached to pegasus.access-ci.org

- CPU: 32 cores, 128 GB RAM, 256 GB disk
- GPU: 32 cores, 2 GPUs, 128 GB RAM, 256 GB disk
- Hosted on IU Jetstream2, auto-provisioned when needed

Always available, no allocation needed

Can be used for quick turnaround jobs

- workflow development and debugging
- tutorials (not all users might have an allocation at the time of the tutorial)
- classroom

Cloud

IU JetStream2

Provided VM image

Users have to add pegasus.access-ci.org username and token in the cloud-init yaml

Instances self-terminates when there are no more jobs

Jetstream2

Boot Script

This **cloud-init** (1) config describes how to provision the instance. It's provided here to permit specific changes in rare circumstances; please modify it cautiously.

By editing this it's possible to break various Exosphere features like web desktop, web shell, usage graphs, setup status, etc.

```
#cloud-config
users:
  - default

    name: exouser

    shell: /bin/bash
    groups: sudo, admin
    sudo: ['ALL=(ALL) NOPASSWD:ALL']{ssh-authorized-
keys}
ssh pwauth: true
package update: true
package_upgrade: {install-os-updates}
packages:
     it/write_files
bootcmd:

    /opt/ACCESS-Pegasus-Jetstream2/bin/vm-conf alice

aabbcc...
runcmd:
  - echo on > /proc/sys/kernel/printk_devkmsg ||
                                                   true
# Disable console rate limiting for distros that use
kmsq

    sleep 1 # Ensures that console log output from

any previous command completes before the following
command begins
```

HTCondor Annex

- Bring your own HPC allocation
- · Semi-managed, submits glideins via SSH.
 - A glidein can run multiple user jobs it stays active until no more user jobs are available or until end of life has been reached, whichever comes first.
 - A glidein is partitionable job slots will dynamically be created based on the resource requirements in the user jobs. This means you can fit multiple user jobs on a compute node at the same time.
 - A glidein will only run jobs for the user who started it.
- Documentation: https://htcondor.org/experimental/ospool/byoc/

\$ htcondor annex create --nodes 1 --lifetime 7200 \

--project sta230005p --gpu-type v100-16 \$USER GPU@bridges2

delta cpu cpu-interactive gpuA100x4 gpuA100x4-preempt gpuA100x8 gpuA40x4 gpuA40x4-preempt

stampede2

normal development skx-normal

expanse

compute gpu shared gpu-shared

anvil

wholenode wide shared gpu gpu-debug

bridges2 RM

RM-512 RM-shared EM GPU

GPU-shared

path-facility cpu

pegasus-glidein

- Simple glidein which can be run anywhere, as long as you have outbound network connectivity
- Ties in well with ACCESS Pegasus
- <u>https://github.com/pegasus-isi/pegasus-glidein</u>

Outreach and Workshops

NAIRR Pilot National Artificial Intelligence Research Resource Pilot

AI Unlocked: Empowering Higher Ed through Research and Discovery

	Advancing
Advanced Cyberinfrastructure Coordination Ecosyste	
Getting Started Guide for AI Insti	tutes: SAIL 2023
perinfrastructure (CI) resources and support servi	ces for your research needs.

1 . . .

Recommended Resources

Anvil GPU (Purdue) — 16 nodes.

Bridges-2 GPU (PSC) - 33 nodes, 8 NVIDIA V100 GPUs & 7.68 TB NVMe

Delta GPU (NCSA) - 4 node configs:

100 nodes with 4x A100s: 100 with 4x A40 GPUs; five with 8x A100s; one

DeltaAl (NCSA) - Coming Soon

DARWIN GPU (U Delaware) ----

Large-memory nodes with three different GPU architectures: AMD

Browse all available resources at:

cations.access-ci.org/resource

MI50, NVIDIA T4, & V100

Expanse GPU (SDSC) - 52 nodes, 4 NVIDIA V100 GPUs each

4 NVIDIA A100 GPUs each

with 8x AMD MI100 GPUs

per node

Join the Affinity Group

The AI/CI affinity group is a gathering place for AI researchers to find curated information about using ACCESS resources for AI applications and research.

https://support.access-ci.org/affinity-group s/ai-institutes-cyberinfrastructure

Request an Allocation

Most allocation requests are approved within one business day. Get started with exploring the various resources and upgrade your allocation when your resource needs start to intensify.

https://allocations.access-ci.org

Get Support

Cyl

Support is provided both in a self-service format (Knowledge Base, Ask Cl), and as concierge-level services that pair your project with experts.

https://support.access-ci.org

NAIRR: AI Unlocked

- **Regional versions** Ο coming soon: RMACC, Kentucky, Ohio, SoCal
- **Duke IEEE x ACCESS**
- PFARC
- USRSE
- 5 tutorials across time

zones

16