
WireGuard Capability
Testing

Lincoln Bryant
Judith Stephen
University of Chicago

Aidan Rosberg
Indiana University

1

HTC 2025
June 5, 2025

About WireGuard

● Radically simple VPN software
○ Key exchange inspired by SSH, no X.509 or PKI
○ Static IP assignment to a Linux tunnel interface
○ Small codebase (~4K LoC vs 100K+ for OpenVPN or 400K+ for IPsec)

● Modern cryptographic standards
○ X25519 key change (Diffie-Hellman) for authentication
○ ChaCha20-Poly1305 for data transfer

● Operates at Layer 3
○ All data transport over UDP

● Merged into the mainline Linux Kernel (5.6+)
○ Available in EL9 as a Tech Preview

● Userspace implementations also exist, such as Cloudflare's BoringTun

2

What is it good for?

● Various modes of integration
○ Fully connected VPN mesh, every node has WireGuard installed and

connected to the mesh
○ Strategically placed WireGuard nodes to act as gateways into the network
○ Direct application integration, with WireGuard lib compiled in

3

Ideas for applications

● Flat, private networks for cluster applications
○ Application only sees a private network, the underlying network

topology is invisible

● Reasonably secure, wide-area filesystem mounts
○ Protocols like NFS encrypted in transport by WireGuard

● Distributed analysis facilities
○ Contribute resources from T1s, T2s, even your laptop :)

4

Control plane management

● WireGuard has no built-in notion of a control plane
○ YOU are responsible for allocating IPs to every node in the mesh
○ Key exchange in a fully connected mesh from every peer, to every

peer, is not scalable!

● A few options: Tailscale, Netbird, others
○ Tailscale is perhaps the most popular:

■ Semi-open source, with a proprietary control plane
■ Alternative, open source control plane exists, support unclear

○ Netbird doesn't market nearly as well, but it is fully open source , so
we went with it 5

Netbird Features

6

● Peer management
○ Including

ephemeral peers
● OAuth2 integration
● Internal DNS

nameservers
● Liveness probing
● Networks, routes,

etc

Kubernetes on top of WireGuard

● The WireGuard networking model is powerful and
flexible enough that you can build a working
Kubernetes cluster on top of it

● WireGuard as an underlayment technology is
simplifies the networking by being separate from,
and effectively invisible to, Kubernetes

● Convenient for adding resources from sites that
may not have a fully flexible firewall at the WAN.
○ For instance, some sites can't provide WAN-facing network

service capability, but can provide disk, compute, etc

7

US ATLAS / ATLAS Canada
Kubernetes Mesh

Some performance considerations & measurements

● The encryption used by WireGuard is not (today)
offloadable to hardware
○ Non-negligible CPU usage encrypting/decrypting traffic

● WireGuard encapsulation requires 60 bytes of
overhead for IPv4, 80 bytes for IPv6

● WireGuard performance with the kernel module
in EL9 at ~MTU 1500 (minus overhead) is fairly
bad compared to line rate

● Increasing the MTU to near-9000 improves
things significantly, but still not line rate on a
2x10G bond

● CPU usage is reasonably high on a Sandybridge
CPU with 28 hyperthreads 8

Gateway nodes

● Running WireGuard on all nodes can be challenging or undesirable
○ Access can still be provided via gateway nodes

● Doesn't provide the same level of full connectivity, but does allow
applications to reach across the WireGuard Network to access
resources

● Example:

9

[root@umich001 media]# tracepath 192.168.140.133
 1?: [LOCALHOST] pmtu 1280
 1: 100.81.190.82 6.311ms
 1: 100.81.190.82 6.372ms
 2: 192.168.140.133 6.339ms
reached

WireGuard private network
(RFC 6598)

UChicago AF private LAN

Node at University of Michigan

WireGuard and Privilege

● Can we have containerized applications join or leave the mesh
in an ephemeral way, without privilege? (Think glideins/pilots)

● Yes, with some specific requirements:
○ User namespaces >0, network namespaces >0
○ CAP_NET_ADMIN, CAP_NET_RAW

■ For creating tunnel devices and manipulating raw packets
○ CAP_SYS_MODULE

■ For loading the WireGuard kernel module (userspace implementation will
work if needed)

10

WireGuard under Podman

● At SLAC, we successfully joined a proof-of-concept container to
the mesh as an unprivileged user via:
podman run --cap-add=NET_ADMIN \

 --cap-add=NET_RAW \

 --cap-add=SYS_MODULE \

 --sysctl="net.ipv4.conf.all.src_valid_mark=1" \

 --sysctl="net.ipv4.conf.all.forwarding=1" \

 -v /lib/modules:/lib/modules \

 -v /dev/net:/dev/net

11

WireGuard under OpenShift

12

● OpenShift's security model presents additional challenges
○ All of the capabilities need to be included in a not-quite-root service account

● Issues mounting /dev/tun into the container
○ This seems to inescapably require rootly privileges

■ hostPath mounts in Kubernetes are dangerous and leaky

● Since OKD effectively requires WireGuard to run as root,
perhaps a gateway node configuration is more appropriate
○ Cluster admin runs the gateway
○ Clients just 'use' the network

Cybersecurity Considerations

● In especially security-conscious environments, policy could
be challenging

● Cybersecurity experts tell us that it's important for them to be
able to inspect the unencrypted traffic

● If there's value from using WireGuard in these environments,
perhaps a configuration with dedicated routing nodes would
be appropriate

13

Conclusions/Summary

● WireGuard enables lightweight VPN meshes between sites, which may
enable novel workloads

● WireGuard's design is robust enough to facilitate complex applications
including Kubernetes

● Linux's containerization facilities are advanced enough to generally
allow us to run WireGuard unprivileged on workers and other resources

● Performance is okay when tuned, but needs to be studied further,
especially on newer hardware

14

