
Managing, Maintaining, and
Monitoring a large HTC system

2025 June 4, HTC25

Tom Smith, BNL Scientific Computing and Data Facility (SCDF)

Brief Overview of our HTC system

It was a busy year..
● EOL for el7 (Migrate EVERYTHING to Alma Linux 9)
● New provisioning system (Foreman)
● Puppet code updated
● Addition of 23 racks of compute (~100k logical cores)
● Retired some truly ancient servers

2

ATLAS Tier 1 pool sPHENIX pool (new!) Shared pool

Worker nodes (EPs) ~340 ~1200 ~480

Logical cores 33k 133k 40k

HEPscore23 ~490k ~2.03M ~485k

Condor CEs 8 0 2

Submit nodes (APs) 0 12 40+

● New ARM arch queue
○ Ampere Altra, Altra Max
○ Nvidia Grace/Grace
○ See bonus slide for benchmark

● Monitoring improvements

…and more!

(BNL Site Report in 1 slide)

Managing the linux farm

3

Provisioning with Foreman:
● Handles the OS management, PXE

booting, DHCP, TFTP
○ Kickstart/preseed, partitioning

● Serves as Puppet ENC, handles puppet
parameters / environment switching

Orchestration with Puppet:
● Handles post-install configuration
● Runs on a schedule to deploy changes /

ensure compliance
Version Control with Git (Gitea):
● Pretty self explanatory. Use git
● Git branches correspond to puppet

environments (deployed with r10k)

Maintaining the HTC system

4

The end of el7 brought on many challenges (and opportunity!)
● Updating the infrastructure (OS upgrades, RHEV -> ~320 Openshift VMs)
● Updating the HTCondor configurations

○ Clean up (a lot) of outdated / redundant configs
○ Use defaults when possible
○ Capture *everything* in configuration management

■ If it isn’t in git, it didn’t happen
■ one-off manual changes not allowed in production

Within the last 2 years we upgraded HTCondor a bit
 9.0.X -> 10.0.X -> 23.0.X -> 23.9.X* -> 24.0.X
*needed to jump off LTS for a bit to grab some critical cgroups fixes included in later LTS versions

HTCondor upgrade strategies

5

Strategy 1: Rolling upgrade / mixed major version pool
● The following steps can be performed in no particular order

○ Drain EPs in batches, upgrade, then add back to the same pool
○ Upgrade APs and CEs (respecting redundancy), add back to same pool
○ Upgrade Central Manager <- (surprisingly the easiest part)

● Pros:
○ 100% uptime (very nice!)
○ mostly transparent to users
○ Pool is unified during the upgrade

● Cons:
○ Mixed version pool (across Major versions)
○ configuration of old/new need to play nice
○ Feels like testing in production

HTCondor upgrade strategies (part 2)

6

Strategy 2: Create a new separate pool (aka- new pool, who dis?)
● Create the “vertical slice”

○ Brand new Central manager
○ New (or stolen from old pool) EPs
○ New (or stolen from old pool) APs/CEs

● Test the new pool under production like circumstances (get brave users to run real jobs, etc)
○ repeat until satisfied

● Drain and migrate / rebuild resources from old pool until finished

● Pros:
○ New pool configuration can be different
○ Homogenous versions (very nice!)
○ No version compatibility testing required

● Cons:
○ Pool is split during upgrade
○ Not so transparent for users

Monitoring - all the things!

7

Condor adstash / Opensearch

8

Grafana / Fifemon
https://research.cs.wisc.edu/htcondor/HTCondorWeek2017/presentations/ThuStrecker-Kellogg_Monitoring.pdf
https://research.cs.wisc.edu/htcondor/HTCondorWeek2016/presentations/ThuRetzke_Fifemon.pdf

https://research.cs.wisc.edu/htcondor/HTCondorWeek2017/presentations/ThuStrecker-Kellogg_Monitoring.pdf
https://research.cs.wisc.edu/htcondor/HTCondorWeek2016/presentations/ThuRetzke_Fifemon.pdf

9

10

Prometheus / Node Exporter

11

Prometheus / Node Exporter cont’d

Honorable mention: Nagios (not pictured)

HTCondor Wishlist

12

Problem: I want to upgrade my pool(s) more often, but every time I do, it
wastes (literally) millions of cpu hours of compute

Facts:
● LTS releases are pretty often, and contain a lot of fixes that we want
● Upgrading our pool(s) is a costly endeavor, so we must pick and choose

/ prioritize the fixes and features we need vs want

(Impossible?) Request: A way to upgrade the condor version on EPs that
doesn’t require fully draining it. (Can already running jobs finish under the
old version, and new ones start under the new version?)

Acknowledgment / Any questions ?

13

Thanks to:
● BNL SCDF Staff
● ATLAS community
● sPHENIX experiment

Special Thanks to:
● SCDF IT Fabric team

○ Matt Cowan, Costin Caramarcu,
Kevin Casella, Oszkar Tarjan,
Zhihua Dong, Shigeki Misawa

● HTCondor team

Very Special Thanks to:
● TJ (John Knoeller) from HTCondor team

Bonus Slides

14

Most common hold reason nowadays…

15

Jobs get Held the moment
they go over what they
request. Working as
intended!
Prevents machines from
swapping / exhausting
memory

Solution:
Simply re-submit with a
larger request

Some favorite condor commands

16

condor_who What’s running on the EP (nice replacement for `ps -ef | grep starter`)

condor_status -compact Overview of startds (EPs)

condor_status -schedd Overview of schedds (~APs, CEs)

condor_status -master Overview of versions, condor daemon uptime

condor_q -global -limit X Show X number of jobs in every queue in the pool

condor_config_val -summary Shows configs you changed (and where!)

condor_config_val -dump | grep -i <something> Looking for <something> in your config?

condor_status -direct `condor_who -daemons | grep Startd | awk
'{print $6}'`

Run on an EP, give me the output of condor_status of myself, but don’t
query the CM (This idea is useful for certain types of cron jobs so you
don’t kill the CM with requests)

condor_status -compact -af:t Machine <Attribute1> <Attribute2> …

condor_q -af:jt <JobAttribute1> <JobAttribute2> …

Nice format for feeding into grep / sed / awk. You can cook some crazy
bash one liners to do just about anything. Autoformat is great

Condor AP tuning for absurd number of running jobs

17

We wanted to be able to fill our sPHENIX pool (130k logical core)
with the fewest number of APs

● Worst case: all single core jobs
● Settled on 3 APs with up to 50k running

jobs each, a 4th for redundancy (soon)
● We allot ~2MB of memory per running job

(>100GB of memory total)
● needed to increase linux ephemeral port

range (Theoretical max of ~65K)
Default was 32768-61000
Changed to 10000-65000

● Some other config changes:
○ MAX_JOBS_PER_SUBMISSION=1000000000
○ MAX_JOBS_RUNNING=50000
○ MAX_JOBS_PER_OWNER = 1000000

ARM Arch (and x86) benchmarking results

18

