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ATLAS Tier 1 pool sPHENIX pool (new!) | Shared pool
Worker nodes (EPs) ~340 ~1200 ~480
Logical cores 33k 133k 40k
HEPscore23 ~490K ~2.03M ~485k
Condor CEs 8 0 2
Submit nodes (APs) 0 12 40+
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It was a busy year.. prTENX
e EOL forel7 (Migrate EVERYTHING to Alma Linux 9)
e New provisioning system (Foreman) e New ARM arch queue
e Puppet code updated o Ampere Altra, Altra Max
e Addition of 23 racks of compute (~100k logical cores) o Nvidia Grace/Grace
e Retired some truly ancient servers o See bonus slide for benchmark
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Managing the linux farm

Provisioning with Foreman:
e Handles the OS management, PXE
FOREMAN booting, DHCP, TFTP
o Kickstart/preseed, partitioning
e Serves as Puppet ENC, handles puppet
parameters / environment switching
Orchestration with Puppet:
e Handles post-install configuration
e Runs on a schedule to deploy changes /
ensure compliance
puppet 0 't Version Control with Git (Gitea):
gl e Pretty self explanatory. Use git

e Git branches correspond to puppet

environments (deployed with r10k)
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Maintaining the HTC system

The end of el7 brought on many challenges (and opportunity!)
e Updating the infrastructure (OS upgrades, RHEV -> ~320 Openshift VMs)
e Updating the HTCondor configurations
o Clean up (a lot) of outdated / redundant configs
o Use defaults when possible
o Capture *everything® in configuration management
m Ifitisn’tin git, it didn’t happen
m one-off manual changes not allowed in production

Within the last 2 years we upgraded HTCondor a bit
9.0.X->10.0.X->23.0.X->23.9.X* ->24.0.X

I *needed to jump off LTS for a bit to grab some critical cgroups fixes included in later LTS versions
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HTCondor upgrade strategies

Strategy 1: Rolling upgrade / mixed major version pool
e The following steps can be performed in no particular order
o Drain EPs in batches, upgrade, then add back to the same pool
o Upgrade APs and CEs (respecting redundancy), add back to same pool
o Upgrade Central Manager <- (surprisingly the easiest part)

e Pros: e Cons:
o 100% uptime (very nice!) o Mixed version pool (across Major versions)
o mostly transparent to users o configuration of old/new need to play nice
o Pool is unified during the upgrade o Feels like testing in production

CPUs

35K
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HTCondor upgrade strategies (part 2)

Strategy 2: Create a new separate pool (aka- new pool, who dis?)

e Create the “vertical slice”
o Brand new Central manager
o New (or stolen from old pool) EPs
o New (or stolen from old pool) APs/CEs

e Test the new pool under production like circumstances (get brave users to run real jobs, etc)

o repeat until satisfied

e Drain and migrate / rebuild resources from old pool until finished

e Pros:
o New pool configuration can be different
o Homogenous versions (very nice!)
o No version compatibility testing required

e Cons:
o Poolis split during upgrade
o Not so transparent for users
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Monitoring - all the things!

Condor adstash / Opensearch

Search Dashboards

= Discover New Save Open Share Reporting Inspect

®  + Add filter

htcondor-* § 5,262,916 hits
Q Search field names May 26, 2025 @ 08:42:29.392 - Jun 2, 2025 @ 08:42:29.392 Auto v

&) Filter by type 0 i

Selected fields | = i

~source

Count

Available fields

: 3 | l
Popular 5 JEl i S S s [ | A | | S ¢ | Tl e 3 s e | : = e J}

# ExitCode

GlobalJobld EnteredCurrentStatus per 3 hours

*

GpusProvisioned Time « _source

Memon/Lsage ¥ Jun 2, 2025 @ ©8:40:06.060 RecordTime: Jun 2, 2825 @ 08:40:13.000 ScheddName: _ StartdSlot: slot1_2 StartdName: _ Status: Running Universe: Vanilla
RequestMemory o'_ReudentSetSlze 564 executedirwasencrypted: False NumCkpts_RAW: © ExitBySignal: false jobisrunning: True shadowipaddr: _
ScheddName — JobPrio: @ TargetType: Machine JobCurrentStartDate: Jun 2,
TotalSuspensions 2025 e e8:40:06.000 myaddress: [ NG

. id _ BatchRuntime: 345,600 MemoryUsage: 1 ExecutableSize RAW: 37 xcount: 8 BytesRecvd: 49,984

*

*

*

t _index
B ore 5 Expanded document View surrounding documents  View single document
t _type
Table JSON
% aarch_job
t AcctGroup
t AcctGroupUser
t activationduration # AutoClusterId 726,813
t activationexecutionduration t BatchQueue ||
t activationsetupduration
# BatchRuntime 345,600
t activationteardownduration
# BytesRecvd 49,984
~ B kh t allowedjobduration
t rUU aven t] Arguments # BytesSent 6,922
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Grafana / Fifemon

https://research.cs.wisc.edu/htcondor/HT CondorWeek2017/presentations/ThuStrecker-Kellogg Monitoring.pdf
https://research.cs.wisc.edu/htcondor/HT CondorWeek2016/presentations/ThuRetzke Fifemon.pdf

CPU Usage by Group Memory Usage by Group
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https://research.cs.wisc.edu/htcondor/HTCondorWeek2017/presentations/ThuStrecker-Kellogg_Monitoring.pdf
https://research.cs.wisc.edu/htcondor/HTCondorWeek2016/presentations/ThuRetzke_Fifemon.pdf

Running Jobs

Idle Jobs
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Prometheus / Node Exporter
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SWAP Used © RootFS Used ©

‘ 23.4%

CPU Cores ©
128 503 GiB

RAM Total © SWAP Total @
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RootFS Total ® Uptime @

s 3.0%

61GiB 6.8 weeks

Memory Basic @
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320GiB
256 GiB
192 GiB
128 GiB
84 GiB
o8
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Prometheus / Node Exporter cont'd

Memory Basic ®

384 GiB
320 GiB
256 GiB
192 GiB
128 GiB

64 GiB

0B
12:00

RAM Total == RAM Used == RAM Cache + Buffer == RAM Free == SWAP Used
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v SPHNX

SPHNX CPUBusy ©

v SPOOL

SPOOL CPUBusy ©
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ACAS CPUBusy ©

‘ 96.9% l
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v ACAS

SPHNX RAM Used ©
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ACASRAM Used ©
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SPOOL CPU Cores (©
2 5 . 3 K

ACAS CPU Cores @
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Honorable mention: Nagios (not pictured)
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HTCondor Wishhst

Problem: | want to upgrade my pool(s) more often, but every time | do, it
wastes (literally) millions of cpu hours of compute

Facts:

e LTS releases are pretty often, and contain a lot of fixes that we want

e Upgrading our pool(s) is a costly endeavor, so we must pick and choose
| prioritize the fixes and features we need vs want

(Impossible?) Request: A way to upgrade the condor version on EPs that

doesn’t require fully draining it. (Can already running jobs finish under the
old version, and new ones start under the new version?)

¢ Brookhaven
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Most common hold reason nowada S...
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Jobs get Held the moment
they go over what they
request. Working as
intended!

Prevents machines from
swapping / exhausting
memory

Solution:
Simply re-submit with a
larger request

15




Some favorite condor commands

condor_who What'’s running on the EP (nice replacement for "'ps -ef | grep starter’)
condor_status -compact Overview of startds (EPs)

condor_status -schedd Overview of schedds (~APs, CEs)

condor_status -master Overview of versions, condor daemon uptime

condor_q -global -limit X Show X number of jobs in every queue in the pool

condor_config_val -summary Shows configs you changed (and where!)

condor_config_val -dump | grep -i <something> Looking for <something> in your config?

condor_status -direct "condor_who -daemons | grep Startd | awk Run on an EP, give me the output of condor_status of myself, but don’t
{print $6}" query the CM (This idea is useful for certain types of cron jobs so you

don’t kill the CM with requests)

condor_status -compact -af:t Machine <Attribute1> <Attribute2> ... Nice format for feeding into grep / sed / awk. You can cook some crazy
bash one liners to do just about anything. Autoformat is great
condor_q -af:jt <JobAttribute1> <JobAttribute2> ...

¢ Brookhaven
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Condor AP tuning for absurd number of running jobs

We wanted to be able to fill our sPHENIX pool (130k logical core)
with the fewest number of APs

e Worst case: all single core jobs
e Settled on 3 APs with up to 50k running
jobs each, a 4th for redundancy (soon) , o

UL

e \We allot ~2MB of memory per running job i
(>100GB of memory total) i

&0k

e needed to increase linux ephemeral port :
range (Theoretlcal maX Of ~65K) = sphnxprod01 == sphnxprod02 == sphnxprod03 == sphnxuser1 = sphnxuser02 = sphnxuser03 == sphnxuser04 == sphnxuser05 == sphnxuser06 = sphnxuser(7
DefaUIt WaS 32768'61 OOO = sphnxuser(8
Changed to 10000-65000

e Some other config changes:
o MAX_JOBS_PER_SUBMISSION=1000000000
o MAX_JOBS_RUNNING=50000
o MAX_JOBS_PER_OWNER = 1000000

Running Jobs

) J e
17:00 18:00 19:00 20:00 2100 22:00 23:00 00:00 0100 02:00 03:00
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ARM Arch (and x86) benchmarking results

6336Y
HS | 1285
HS/thread | 13.39
Cores | 2 x24
Threads | 96
Power (W) | 601

HS/W 2.14

National Laboratory
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15.9

2 x144
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ARM Ampere Altra
1041

16.27

1 x64

64

252

413

ARM Ampere AltraMax

2029

15.85

1x128

128

370

5.49

ARM NVIDIA Grace *

4435

30.8

2x72

144

817

5.43

18



