Brookhaven

National Laboratory

£ % U.S. DEPARTMENT

¥ of ENERGY

Managing, Maintaining, and
Monitoring a large HTC system

Tom Smith, BNL Scientific Computing and Data Facility (SCDF)

2025 June 4, HIC25 X 1 (©) [@BrookhavenLab

ATLAS Tier 1 pool sPHENIX pool (new!) | Shared pool
Worker nodes (EPs) ~340 ~1200 ~480
Logical cores 33k 133k 40k
HEPscore23 ~490K ~2.03M ~485k
Condor CEs 8 0 2
Submit nodes (APs) 0 12 40+

ATLAR S0 el e

It was a busy year.. prTENX
e EOL forel7 (Migrate EVERYTHING to Alma Linux 9)
e New provisioning system (Foreman) e New ARM arch queue
e Puppet code updated o Ampere Altra, Altra Max
e Addition of 23 racks of compute (~100k logical cores) o Nvidia Grace/Grace
e Retired some truly ancient servers o See bonus slide for benchmark

L? Brookhaven e Monitoring improvements

National Laboratory 2

Managing the linux farm

Provisioning with Foreman:
e Handles the OS management, PXE
FOREMAN booting, DHCP, TFTP
o Kickstart/preseed, partitioning
e Serves as Puppet ENC, handles puppet
parameters / environment switching
Orchestration with Puppet:
e Handles post-install configuration
e Runs on a schedule to deploy changes /
ensure compliance
puppet 0 't Version Control with Git (Gitea):
gl e Pretty self explanatory. Use git

e Git branches correspond to puppet

environments (deployed with r10k)

I k? Brookhaven
National Laboratory 3

Maintaining the HTC system

The end of el7 brought on many challenges (and opportunity!)
e Updating the infrastructure (OS upgrades, RHEV -> ~320 Openshift VMs)
e Updating the HTCondor configurations
o Clean up (a lot) of outdated / redundant configs
o Use defaults when possible
o Capture *everything® in configuration management
m Ifitisn’tin git, it didn’t happen
m one-off manual changes not allowed in production

Within the last 2 years we upgraded HTCondor a bit
9.0.X->10.0.X->23.0.X->23.9.X* ->24.0.X

I *needed to jump off LTS for a bit to grab some critical cgroups fixes included in later LTS versions

k? Brookhaven
National Laboratory 4

HTCondor upgrade strategies

Strategy 1: Rolling upgrade / mixed major version pool
e The following steps can be performed in no particular order
o Drain EPs in batches, upgrade, then add back to the same pool
o Upgrade APs and CEs (respecting redundancy), add back to same pool
o Upgrade Central Manager <- (surprisingly the easiest part)

e Pros: e Cons:
o 100% uptime (very nice!) o Mixed version pool (across Major versions)
o mostly transparent to users o configuration of old/new need to play nice
o Pool is unified during the upgrade o Feels like testing in production

CPUs

35K

k? Brookhaven 0 /

National Laboratory
06/01 06/03 06/05 06/07 06/09 06/11 06/13 06/15 06/17 06/19 06/21 06/23 06/25 06/27 06/29 07/01 07/03 07/0¢

HTCondor upgrade strategies (part 2)

Strategy 2: Create a new separate pool (aka- new pool, who dis?)

e Create the “vertical slice”
o Brand new Central manager
o New (or stolen from old pool) EPs
o New (or stolen from old pool) APs/CEs

e Test the new pool under production like circumstances (get brave users to run real jobs, etc)

o repeat until satisfied

e Drain and migrate / rebuild resources from old pool until finished

e Pros:
o New pool configuration can be different
o Homogenous versions (very nice!)
o No version compatibility testing required

e Cons:
o Poolis split during upgrade
o Not so transparent for users

CPU Usage by Group

150 K
125 K
100 K
75K
50 K
25K

0
03/22 03/25 03/28 03/31

04/03

04/06

04/09

04/12

04/15

04/18

k? Brookhaven

National Laboratory

Monitoring - all the things!

Condor adstash / Opensearch

Search Dashboards

= Discover New Save Open Share Reporting Inspect

® + Add filter

htcondor-* § 5,262,916 hits
Q Search field names May 26, 2025 @ 08:42:29.392 - Jun 2, 2025 @ 08:42:29.392 Auto v

&) Filter by type 0 i

Selected fields | = i

~source

Count

Available fields

: 3 | l
Popular 5 JEl i S S s [| A | | S ¢ | Tl e 3 s e | : = e J}

ExitCode

GlobalJobld EnteredCurrentStatus per 3 hours

*

GpusProvisioned Time « _source

Memon/Lsage ¥ Jun 2, 2025 @ ©8:40:06.060 RecordTime: Jun 2, 2825 @ 08:40:13.000 ScheddName: _ StartdSlot: slot1_2 StartdName: _ Status: Running Universe: Vanilla
RequestMemory o'_ReudentSetSlze 564 executedirwasencrypted: False NumCkpts_RAW: © ExitBySignal: false jobisrunning: True shadowipaddr: _
ScheddName — JobPrio: @ TargetType: Machine JobCurrentStartDate: Jun 2,
TotalSuspensions 2025 e e8:40:06.000 myaddress: [NG

. id _ BatchRuntime: 345,600 MemoryUsage: 1 ExecutableSize RAW: 37 xcount: 8 BytesRecvd: 49,984

*

*

*

t _index
B ore 5 Expanded document View surrounding documents View single document
t _type
Table JSON
% aarch_job
t AcctGroup
t AcctGroupUser
t activationduration # AutoClusterId 726,813
t activationexecutionduration t BatchQueue ||
t activationsetupduration
BatchRuntime 345,600
t activationteardownduration
BytesRecvd 49,984
~ B kh t allowedjobduration
t rUU aven t] Arguments # BytesSent 6,922

National Laboratory

t autoclusterattrs # CPUsUsage e

Grafana / Fifemon

https://research.cs.wisc.edu/htcondor/HT CondorWeek2017/presentations/ThuStrecker-Kellogg Monitoring.pdf
https://research.cs.wisc.edu/htcondor/HT CondorWeek2016/presentations/ThuRetzke Fifemon.pdf

CPU Usage by Group Memory Usage by Group

150 K

— 50018 *

100 K 400 TB

75K 300 7B

50K 200TB

25K 100 TB

oMmB
09:30 10:00 10:30 11:00 1:30 12:00 12:30 13:00 13:30 14:00 14:30 15:00 15:30 16:00 16:30 17:00 17:30 18:00 09:30 10:00 10:30 11:00 1:30 12:00 12:30 13:00 13:30 14:00 1430 1500 15:30 16:00 16:30

== sphenix_.mdc2 Mean:2 == sphenix_prod Mean: 19.1K == sphenix_user Mean: 25.2 K == Total CPUs Mean: 132K

17:00 17:30 18:00
== sphenix_mdc2 Mean: 2.05GB == sphenix_prod Mean:77.0 TB == sphenix_user Mean: 278 TB == Total RAM Mean: 520 TB

Group Usage Weight-Normalized Weighted Usage by Group

100% 150K
80% 125K
100K

60%
75K

40%
S0K
20% 25K
0% L)

10:00 1:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00 09:30 10:00 10:30 1:00 1:30 12:00 12:30 13:00 13:30 14:00
== sphenix.mdc2 Mean: 2 == sphenix_prod Mean: 191K == sphenix_user Mean: £8.0 K

14:30 15:00 15:30 16:00 16:30 17:00
== sphenix_prod Mean:19.1K == sphenix_user Mean: 8.10 K == Total CPUs Mean: 132K

17:30 18:00

Usage by Group group_sphenix_user User Breakdown (Weighted)

20K

¢ Brookhaven
National Laboratory

https://research.cs.wisc.edu/htcondor/HTCondorWeek2017/presentations/ThuStrecker-Kellogg_Monitoring.pdf
https://research.cs.wisc.edu/htcondor/HTCondorWeek2016/presentations/ThuRetzke_Fifemon.pdf

Running Jobs

Idle Jobs
50K e pr—— = 40K
8 40K e 3
° \ 2 30K
o 30K o >
£ £ a0k / \
E 20K < = ‘
I3 _ - — c = \
ok | = / _ e — 10K () e \
o e ==l P =] S~ o T 7 Biay . = o v\ = = — = N —_— S
09:30 10:00 10:30 1:00 1:30 12:00 12:30 13:00 13:30 14:00 14:30 15:00 15:30 16:00 16:30 17:00 17:30 18:00 09:30 10:00 10:30 1:00 11:30 12:00 12:30 13:00 13:30 14:00 14:30 15:00 15:30 16:00 16:30 17:00 17:30 18:00
== sphnxprod01 sphnxprod02 == sphnxprod03 == sphnxuser02 == sphnxuser03 == sphnxuser05 == sphnxuser07 == sphnxprod01 sphnxprod03 == sphnxuser02 == 104 == 05 == sp 06 == sphnxuser07 == sphnxuser08
Busiest Schedds Collector Update Rate
0.8
0.6 -1 A & 300
/ |
0.4 / 1 g 2 200
‘ ‘ A
0.2 | l_ - X v, - 100
I ccoccmee . iSRS (57 (A = Ve RS e U O A \ U ¥ =i
09:30 10:00 10:30 1:00 1:30 12:00 12:30 13:00 13:30 14:00 14:30 15:00 15:30 16:00 16:30 17:00 17:30 18:00 0
== sphnxprod03_sdcc_bnl_gov Mean: 0.231 Max: 0.754 sphnxuser05_sdcc_bnl_gov Mean: 0.215 Max: 0.503 == sphnxuser01_sdcc_bnl_gov Mean: 0.0841 Max: 0.269 09:30 10:00 10:30 11:00 1:30 12:00 12:30 13:00 13:30 14:00 14:30 15:00 15:30 16:00 16:30 17:00 17:30 18:00
== sphnxuser02_sdcc_bnl.gov Mean: 0.0812 Max: 0.265 == sphnxuser03_sdcc_bnl_gov Mean: 0.0786 Max: 0.357 == Updates Per Second
Negotiation Cycle Jobs Per Second Per Schedd
45 40
w 60 40 | {1, 35
£ 4 5 |1 A o
8 30 | | It- ; 25
A 20 il " |I 25 f 20
e e HTHTTTHTTTTTTTHTT 20 | ' \) ‘\
T Wi 1 V |
P T T Illlllllllllli“"|"||”ll““"""l"""“ ||||||| i IIiilI“lll“lll|ulhu 15 ! ! 2
09:30 10:00 10:30 11:00 M30 12:00 12:30 13:00 13:30 14:00 14:30 15:00 15:30 16:00 16:30 17:00 17:30 18:00 10 = 2 ,\ \ f A A A
: Bhar it o e | g NAMIRKA M"‘\N\M’ UadeddA \\ZM' \WAMA ADAA S
—ne . ast e o 0 - VARTAVALY, VAVAAVAVIEY. SN0 V 4 (N VI N e L.__J_L_._ ALAMA A 0
== Phase 1- Duration 10.7 3 18 1 09:30 10:00 10:30 1:00 n:30 12:00 12:30 13:00 13:30 14:00 14:30 15:00 15:30 16:00 16:30 17:00 17:30 18:00
Phase 2 - Duration 121 0 3 0 == sphnxpred03 - Start sphnxuser05 - Start == sphnxuser02 - Start == sphnxprod03 - Exit == sphnxuser05 - Exit == sphnxuser02 - Exit
User Priorities Held Jobs Top 5 Regular Users
oz} 2 20k
60K |
140 K \ V g 10K 100 K
120K | ! r\ f 8K 80K
100 K ‘ | 6K 60 K
80K | A | aK 40K
60K [i f 2K 20K
40K | A | f \' A) 0 N .
20K NV = AN A \ [\ ; ; ; ? ; ; : ; : . .
0 LY [— ravi \/ ! 10:00 1:00 12:00 13:00 14:00 15:00 16:00 17:00 18:0C 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00
09:30 10:00 10:30 11:00 1:30 12:00 12:30 13:00 13:30 14:00 14:30 16:00 16:30 17:00 17:30 18:00 == sphnxprod01

¢ Brookhaven

National Laboratory

sphnxprod02 == sphnxprod03 == sphnxuser01 == sphnxuser02 == sphnxuser03 e
== sphnxuser04 == sphnxuser05S == sphnxuser06 sphnxuser07 == sphnxuser08 e

Prometheus / Node Exporter

v Quick CPU / Mem

Pressure ©

v Basic CPU / Mem

CPU Basic @
100%
80%
60%
40%
20%
0%

23:00 00:00

/ Disk

CPUBusy ©

No data

/ Net / Disk

0100

SysLoad Q@

100.0% 142.8%

03:00 04:00 05:00 06:00 07:00

«= Busy System == Busy User == Busy lowait == BusyIRQs == Busy Other == Idle

Network Traffic Basic

5Gb/s
4 Gb/s
3Gb/s
2Gb/s | '
1Gos | b

®

I [
b

| ALl

RAM Used ©

08:00

54.3%

08:00 10:00

i Mrl 1L

0Ob/s =
-1Gb/s 1h

-2 Gb/s

23:00 00:00 0100

| l . ‘ | .o U

03:00 04:00 05:00 06:00 07:00

08:00

== recv enp0s20fQuSu2c2 == recv ens7f0 == recv ens7f] == recvio == trans enp0s20fOuSu2c2 == trans ens7f0 <= trans ens7fl == translo

Logs (7panel)

Memory Meminfo

Memory Vmstat

System Timesync

System Misc
> Hardware Misc

> Storage Disk

> Storage Filesystem

> Network Traffic
> Network Sockstat
> Network Netstat

> Node Exporter

CPU / Memory / Net / Disk

System Processes

(8 panels)

{15 panels)

(4 panels)

(4 panels)

(7 panels)

(9 panels)

(3 panels)

(8 panels)

(5 panels)

(17 panels)

(5 panels)

(12 panels)

(2 panels)

.|
I "u|rr T

08:00 10:00

SWAP Used © RootFS Used ©

‘ 23.4%

CPU Cores ©
128 503 GiB

RAM Total © SWAP Total @

187 GiB

RootFS Total ® Uptime @

s 3.0%

61GiB 6.8 weeks

Memory Basic @

512 GiB
448 GiB
384 Gie
320GiB
256 GiB
192 GiB
128 GiB
84 GiB
o8
23:00 00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00 09:00 10:00

RAM Total == RAM Used == RAM Cache + Buffer == RAM Free == SWAP Used

Disk Space Used Basic @
100%

80%

60%

40%

0%
23:00 00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00 09:00 10:00

«= [varjcymfs == [== [home == [boot == [boot/efi

10

Prometheus / Node Exporter cont'd

Memory Basic ®

384 GiB
320 GiB
256 GiB
192 GiB
128 GiB

64 GiB

0B
12:00

RAM Total == RAM Used == RAM Cache + Buffer == RAM Free == SWAP Used

15:00 18:00 21:00 00:00 03:00 06:00 09:00

v SPHNX

SPHNX CPUBusy ©

v SPOOL

SPOOL CPUBusy ©

' 17.9%

ACAS CPUBusy ©

‘ 96.9% l

k? Brookhaven

National Laboratory

v ACAS

SPHNX RAM Used ©

SPOOL RAM Used ©

ACASRAM Used ©

SPHNX CPU Cores ©
SPOOL CPU Cores (©
2 5 . 3 K

ACAS CPU Cores @

33.0«k

SPHNX RAM Total ©

509 T8

SPOOL RAM Total @
62 Tis

ACAS RAM Total ©

108 Tis

SPHNX Total Nodes UP ©

1199

SPOOL Total Nodes UP ©

321

ACAS Total Nodes UP (O

337

.
fooe)
(.

Honorable mention: Nagios (not pictured)

SPHNX Total Nodes DOWN

2

162

0

®

SPOOL Total Nodes DOWN ©

ACAS Total Nodes DOWN ©

SPHNX Nodes Down

SPOOL Nodes Down

ACAS Nodes Down

NONE

SPHNX HPESCORE23 O

2019447

SPOOL HPESCORE23 (©

221031

ACAS HPESCORE23

469396

1

HTCondor Wishhst

Problem: | want to upgrade my pool(s) more often, but every time | do, it
wastes (literally) millions of cpu hours of compute

Facts:

e LTS releases are pretty often, and contain a lot of fixes that we want

e Upgrading our pool(s) is a costly endeavor, so we must pick and choose
| prioritize the fixes and features we need vs want

(Impossible?) Request: A way to upgrade the condor version on EPs that

doesn’t require fully draining it. (Can already running jobs finish under the
old version, and new ones start under the new version?)

¢ Brookhaven
National Laboratory 12

Acknowledgment / Any questlons ?

Thanks to:

e BNL SCDF Staff

e ATLAS community

e SPHENIX experiment

Special Thanks to:
e SCDF IT Fabric team
o Matt Cowan, Costin Caramarcu,
Kevin Casella, Oszkar Tarjan,
Zhihua Dong, Shigeki Misawa
e HTCondor team

Very Special Thanks to:
e TJ (John Knoeller) from HTCondor team

¢ Brookhaven
" National Laboratory 13

I L? Brookhave
National Laborato

n
oy

Bonus Slides

14

Most common hold reason nowada S...

megabytes.
megabytes.
megabytes.
megabytes.
megabytes.
megabytes.
megabytes.
megabytes.
megabytes.
megabytes.
megabytes.
megabytes.
megabytes.
megabytes.
megabytes.
megabytes.
megabytes.
megabytes.
megabytes.
megabytes.
megabytes.
megabytes.
megabytes.
megabytes.
megabytes.
megabytes.
megabytes.
megabytes.
megabytes.
megabytes.
megabytes.
megabytes.
megabytes.
megabytes.
megabytes.
megabytes.
megabytes.
megabytes.
megabytes.
megabytes.
megabytes.

cgroup
cgroup
cgroup
cgroup
cgroup
cgroup
cgroup
cgroup
cgroup
cgroup
cgroup
cgroup
cgroup
cgroup
cgroup
cgroup
cgroup
cgroup
cgroup
cgroup
cgroup
cgroup
cgroup
cgroup
cgroup
cgroup
cgroup
cgroup
cgroup
cgroup
cgroup
cgroup
cgroup
cgroup
cgroup
cgroup
cgroup
cgroup
cgroup
cgroup
cgroup

memory
memory
memory
memory
memory
memory
memory
memory
memory
memory
memory
memory
memory
memory
memory
memory
memory
memory
memory
memory
memory
memory
memory
memory
memory
memory
memory
memory
memory
memory
memory
memory
memory
memory
memory
memory
memory
memory
memory
memory
memory

Brookhaven

National Laboratory

measured
measured
measured
measured
measured
measured
measured
measured
measured
measured
measured
measured
measured
measured
measured
measured
measured
measured
measured
measured
measured
measured
measured
measured
measured
measured
measured
measured
measured
measured
measured
measured
measured
measured
measured
measured
measured
measured
measured
measured
measured

megabytes.
megabytes.
megabytes.
megabytes.
megabytes.
megabytes.
megabytes.
megabytes.
megabytes.
megabytes.
megabytes.
megabytes.
megabytes.
megabytes.
megabytes.
megabytes.
megabytes.
megabytes.
megabytes.
megabytes.
megabytes.
megabytes.
megabytes.
megabytes.
megabytes.
megabytes.
megabytes.
megabytes.
megabytes.
megabytes.
megabytes.
megabytes.
megabytes.
megabytes.
megabytes.
megabytes.
megabytes.
megabytes.
megabytes.
megabytes.
megabytes.

Consider
Consider
Consider
Consider
Consider
Consider
Consider
Consider
Consider
Consider
Consider
Consider
Consider
Consider
Consider
Consider
Consider
Consider
Consider
Consider
Consider
Consider
Consider
Consider
Consider
Consider
Consider
Consider
Consider
Consider
Consider
Consider
Consider
Consider
Consider
Consider
Consider
Consider
Consider
Consider
Consider

resubmitting
resubmitting
resubmitting
resubmitting
resubmitting
resubmitting
resubmitting
resubmitting
resubmitting
resubmitting
resubmitting
resubmitting
resubmitting
resubmitting
resubmitting
resubmitting
resubmitting
resubmitting
resubmitting
resubmitting
resubmitting
resubmitting
resubmitting
resubmitting
resubmitting
resubmitting
resubmitting
resubmitting
resubmitting
resubmitting
resubmitting
resubmitting
resubmitting
resubmitting
resubmitting
resubmitting
resubmitting
resubmitting
resubmitting
resubmitting
resubmitting

request_memory.
request_memory.
request_memory.
request_memory.
request_memory.
request_memory.
request_memory.
request_memory.
request_memory.
request_memory.
request_memory.
request_memory.
request_memory.
request_memory.
request_memory.
request_memory.
request_memory.
request_memory.
request_memory.
request_memory.
request_memory.
request_memory.
request_memory.
request_memory.
request_memory.
request_memory.
request_memory.
request_memory.
request_memory.
request_memory.
request_memory.
request_memory.
request_memory.
request_memory.
request_memory.
request_memory.
request_memory.
request_memory.
request_memory.
request_memory.
request_memory.

Jobs get Held the moment
they go over what they
request. Working as
intended!

Prevents machines from
swapping / exhausting
memory

Solution:
Simply re-submit with a
larger request

15

Some favorite condor commands

condor_who What'’s running on the EP (nice replacement for "'ps -ef | grep starter’)
condor_status -compact Overview of startds (EPs)

condor_status -schedd Overview of schedds (~APs, CEs)

condor_status -master Overview of versions, condor daemon uptime

condor_q -global -limit X Show X number of jobs in every queue in the pool

condor_config_val -summary Shows configs you changed (and where!)

condor_config_val -dump | grep -i <something> Looking for <something> in your config?

condor_status -direct "condor_who -daemons | grep Startd | awk Run on an EP, give me the output of condor_status of myself, but don’t
{print $6}" query the CM (This idea is useful for certain types of cron jobs so you

don’t kill the CM with requests)

condor_status -compact -af:t Machine <Attribute1> <Attribute2> ... Nice format for feeding into grep / sed / awk. You can cook some crazy
bash one liners to do just about anything. Autoformat is great
condor_q -af:jt <JobAttribute1> <JobAttribute2> ...

¢ Brookhaven
National Laboratory 16

Condor AP tuning for absurd number of running jobs

We wanted to be able to fill our sPHENIX pool (130k logical core)
with the fewest number of APs

e Worst case: all single core jobs
e Settled on 3 APs with up to 50k running
jobs each, a 4th for redundancy (soon) , o

UL

e \We allot ~2MB of memory per running job i
(>100GB of memory total) i

&0k

e needed to increase linux ephemeral port :
range (Theoretlcal maX Of ~65K) = sphnxprod01 == sphnxprod02 == sphnxprod03 == sphnxuser1 = sphnxuser02 = sphnxuser03 == sphnxuser04 == sphnxuser05 == sphnxuser06 = sphnxuser(7
DefaUIt WaS 32768'61 OOO = sphnxuser(8
Changed to 10000-65000

e Some other config changes:
o MAX_JOBS_PER_SUBMISSION=1000000000
o MAX_JOBS_RUNNING=50000
o MAX_JOBS_PER_OWNER = 1000000

Running Jobs

) J e
17:00 18:00 19:00 20:00 2100 22:00 23:00 00:00 0100 02:00 03:00

¢ Brookhaven
National Laboratory 17

ARM Arch (and x86) benchmarking results

6336Y
HS | 1285
HS/thread | 13.39
Cores | 2 x24
Threads | 96
Power (W) | 601

HS/W 2.14

National Laboratory

L? Brookhaven

6448Y+

2238

17.48

2 X32

128

654

3.42

6538Y+

2255

17.62

2 x32

128

692

3.26

6548Y+

2496

19.5

2 x32

128

695

3.59

6766E

2401

16.67

1 x144

144

9754

3570

13.95

1x128

256

6766E

4580

15.9

2 x144

288

ARM Ampere Altra
1041

16.27

1 x64

64

252

413

ARM Ampere AltraMax

2029

15.85

1x128

128

370

5.49

ARM NVIDIA Grace *

4435

30.8

2x72

144

817

5.43

18

