

Status of REDTOP and preliminary results from the 2025 Montecarlo campaign

Corrado Gatto INFN Napoli and Northern Illinois University

> Vito Di Benedetto Fermilab

Presented at HTC2025

06/04/2025

Rationale for an η/η' Factory

REDTOE

"Light dark matter must be neutral under SM charges, otherwise it would have been discovered at previous colliders" [G. Krnjaic RF6 Meeting, 8/2020]

- The only known particles with all-zero quantum numbers: Q = I = J = S = B = L = 0 are the η/η' mesons and the Higgs boson (also the vacuum!) ->very rare in nature
- The η meson is a Goldstone boson (the η' meson is not!)
- The η/η' decays are the only mesons with **flavor-conserving** reactions
- 20%-40% of is NOT made of quarks

Experimental advantages:

- Hadronic production cross section is quite large (~ 0.1 barn) \rightarrow easy to produce
- Strong & EM decays are forbidden in lowest order by discrete symmetry invariance. BR of processes from New Physics are enhanced compared to SM.

A η/η' factory is equivalent to a low energy Higgs factory and an excellent laboratory to probe New Physics below 1 GeV

REDTOP Key Points

REDTOP: η/η' **yielding** ~10¹⁴(10¹²) mesons $\mathcal{O}(10^5)$ the existing world sample with a 3-yr run Existing worls sample replicated in ~20 min of REDTOP run

Hadro-produced mesons: requires a 30W (55W) CW proton beam Pion beam also well suited

Designed to search for BSM physics in the MeV-GeV region Main search fields: dark matter and CP-violation Sensitive to 17MeV resonances

Moderate cost: <\$100M excl. contingency and labor</pre>

Main Physics Goals of REDTOP

Test of CP invariance via Dalitz plot mirror asymmetry: $\eta \rightarrow \pi^{\circ}\pi^{+}\pi^{-}$ Search for asymmetries in the dalitz plot with very high statistics

Test of CP invariance via μ polarization studies: $\eta \rightarrow \pi^{\circ} \mu^{+} \mu^{-}$, $\eta \rightarrow \gamma \mu^{+} \mu^{-}$, $\eta \rightarrow \mu^{+} \mu^{-}$ Measure the angular asymmetry between spin and momentum

Dark photon searches: $\eta \rightarrow \gamma A'$, with $A' \rightarrow \mu^+ \mu^-$, $A' \rightarrow e^+ e^-$ Need excellent vertexing and particle ID

QCD axion and ALP searches: $\eta \rightarrow \pi\pi a$, with $a \rightarrow \gamma\gamma$, $a \rightarrow \mu^+\mu^-$, $a \rightarrow e^+e^-$ Dual (or triple!) calorimeters and vertexing

Dark scalar searches: $\eta \rightarrow \pi^{\circ}H$, with $H \rightarrow \mu^{+}\mu^{-}$, $H \rightarrow e^{+}e^{-}$ Dual (or triple!) calorimeters and particle ID

Lepton Flavor Universality studies: $\eta \rightarrow \mu^+\mu^-X$, $\eta \rightarrow e^+e^-X$ Need excellent particle ID

06/04/2025

Detecting BSM Physics with REDTOP (η/η' factory)

Assuming a yield	~10 ¹⁴	η	mesons/yr and	! ~10 ¹² η'	mesons/yr
------------------	--------------------------	---	---------------	-----------------------------	-----------

C, T, CP-violation	New particles and forces searches
CP Violation via Dalitz plot mirror asymmetry: $\eta \rightarrow \pi^o \pi^* \pi$	□Scalar meson searches (charged channel): $\eta \rightarrow \pi^{\circ} H$ with $H \rightarrow e^+e^-$ and
$\square CP$ Violation (Type I – P and T odd , C even): $\eta ext{->} 4\pi^o o 8\gamma$	$H \rightarrow \mu^+ \mu$
CP Violation (Type II - C and T odd , P even): $\eta \to \pi^{\circ} \ell^{*} \ell$ and $\eta \to 3\gamma$	□ Dark photon searches: $\eta \rightarrow \gamma A'$ with $A' \rightarrow \ell^* \ell'$
Test of CP invariance via μ longitudinal polarization: $n \rightarrow \mu^{\dagger} \mu^{-}$	□ <i>Protophobic fifth force searches</i> : $\eta \rightarrow \gamma X_{17}$ with $X_{17} \rightarrow \pi^+ \pi^-$
= C P interview the value of the standard for the stand	•QCD axion searches : $\eta \rightarrow \pi \pi a_{17}$ with $a_{17} \rightarrow e^+e^-$
$\Box CP$ inv. via γ^* polarization studies: $\eta \to \pi \pi^- e^+ e^- \otimes \eta \to \pi \pi^- \mu^+ \mu^-$	■ <i>New leptophobic baryonic force searches</i> : $\eta \rightarrow \gamma B$ with $B \rightarrow e^+e^-$ or $B \rightarrow \psi^- e^-$
CP invariance in angular correlation studies: $\eta \rightarrow \mu^+ \mu^- e^+ e^-$	$\gamma \pi^{\circ}$
$\Box CP$ invariance in angular correlation studies: $\eta \rightarrow \mu^+ \mu^- \pi^+ \pi^-$	$\rightarrow \mu^{+}\mu^{-}$ and $\eta \rightarrow e^{+}e^{-}$
CP invariance in μ polar. in studies: $\eta \square \pi^o \mu^+ \mu^-$	□ Search for true muonium: $\eta \rightarrow \gamma(\mu^+\mu^-) _{2M_{\mu}} \rightarrow \gamma e^+e^-$
$\Box T$ invar. via μ transverse polarization: $\eta \rightarrow \pi^{0} \mu^{+} \mu^{-}$ and $\eta \rightarrow \gamma \mu^{+} \mu^{-}$	Lepton Universality
CPT violation: μ polr. in $\eta \to \pi^* \mu v v v \eta \to \pi^- \mu^+ v - \gamma$ polar. in $\eta \to \gamma$	$\square \eta \rightarrow \pi^{o} H$ with $H \rightarrow \nu N_{2}$, $N_{2} \rightarrow h' N_{1}$, $h' \rightarrow e^{+} e^{-}$
y Other discrete summetry piolations	Other Precision Physics measurements
Other discrete symmetry biolations	Other 1 recision 1 hysics measurements
□Lepton Flavor Violation: $\eta \rightarrow \mu^+ e^- + c.c.$	$\Box Proton \ radius \ anomaly: \ \eta \to \gamma \ \mu^+ \mu^- \ vs \eta \to \gamma \ e^+ e^-$
Radiative Lepton Flavor Violation: $\eta \rightarrow \gamma \mu^+ e^- + c.c.$	\Box <i>All unseen leptonic decay mode of</i> η / η' (<i>SM predicts</i> 10 ⁻⁶ -10 ⁻⁹)
Double lepton Flavor Violation: $\eta \rightarrow \mu^{+}\mu^{+}e^{-}e^{-} + c.c.$	High precision studies on medium energy physics
Non-η/η′ based BSM Physics	
□Neutral pion decay: $\pi^{\circ} \rightarrow \gamma A' \rightarrow \gamma e^+ e^-$	INuclear models
$\Box ALP's$ searches in Primakoff processes: $p \ Z \rightarrow p \ Z \ a \rightarrow l^+l^-$	Chiral perturbation theory
\square Charged nion and kaon decays: $\pi + \rightarrow \mu^{+} \gamma A' \rightarrow \mu^{+} \gamma e^{+} e^{-}$ and $K + \rightarrow \mu^{+} \gamma e^{+} e^{-}$	■Non-perturbative QCD
$\mu^+ v A' \rightarrow \mu^+ v e^+ e^-$	□Isospin breaking due to the u-d quark mass difference
\Box Dark photon and ALP searches in Drell-Yan processes: qqbar \rightarrow	Octet-singlet mixing angle
$A'/a \rightarrow l^{+}l^{-}$	

Detecting BSM Physics with REDTOP (η/η' factory)

Assuming a yield ~ 10^{14} η mesons/yr and ~ $10^{12}\eta'$ mesons/yr

C, T, CP-violation	New particles and forces searches
CP Violation via Dalitz plot mirror asymmetry: $\eta \rightarrow \pi^o \pi^* \pi$	Scalar meson searches (charged channel): $\eta \to \pi^{\circ} H$ with $H \to e^+e^-$ and
• CP Violation (Tupe I – P and T odd , C even): $\eta \rightarrow 4\pi^{\circ} \rightarrow 8\gamma$ • CP Violation (Type II - C and T odd , P even): $\eta \rightarrow \pi^{\circ} t^{*} t$ and $\eta \rightarrow 3\gamma$ • Test of CP invariance via μ longitudinal polarization: $\eta \rightarrow \mu^{*}\mu^{-}$ • CP inv. via γ^{*} polarization studies: $\eta \rightarrow \pi^{*}\pi^{-}e^{+}e^{-} & \eta \rightarrow \pi^{*}\pi^{-}\mu^{*}\mu^{-}$ • CP invariance in angular correlation studies: $\eta \rightarrow \mu^{*}\mu^{-}e^{+}e^{-}$ • CP invariance in angular correlation studies: $\eta \rightarrow \mu^{*}\mu^{-}e^{+}e^{-}$ • CP invariance in angular correlation studies: $\eta \rightarrow \mu^{*}\mu^{-}\pi^{*}\pi^{-}$ • CP invariance in ρ lar correlation studies: $\eta \rightarrow \mu^{*}\mu^{-}\pi^{*}\pi^{-}$	$H \rightarrow \mu^{+}\mu^{-}$ $Dark photon searches: \eta \rightarrow \gamma A' with A' \rightarrow \ell^{+}\ell'$ $Protophobic fifth force searches: \eta \rightarrow \gamma X_{17} \text{ with } X_{17} \rightarrow \pi^{+}\pi^{-}$ $QCD \text{ axion searches}: \eta \rightarrow \pi\pi a_{17} \text{ with } a_{17} \rightarrow e^{+}e^{-}$ $New leptophobic baryonic force searches: \eta \rightarrow \gamma B \text{ with } B \rightarrow e^{+}e or B \rightarrow \gamma \pi^{0}$ $Indirect searches for dark photons new gauge bosons and leptoquark: \eta$ $Protophomode for the photon of the photo$
• Lepton Flavor Violation: $\eta \rightarrow \mu^{+}e^{-} + c.c$ • Radiative Lepton Flavor Violation $\eta \rightarrow \mu^{+}e^{-} + c.c$	Other Precision Physics measurements Simple read $\eta \rightarrow \gamma e^+e^-$
Double lepton Flavor Violation: $\eta \rightarrow \mu^{+}\mu^{-}e^{-} + c.c.$ Non- η/η' based BSM Physics Neutral pion decay: $\pi^{0} \rightarrow \gamma A' \rightarrow \gamma e^{+}e^{-}$ ALP's searches in Primakoff processes: $p Z \rightarrow p Z a \rightarrow l^{+}l^{-}$ Charged pion and kaon decays: $\pi^{+} \rightarrow \mu^{+}v A' \rightarrow \mu^{+}v e^{+}e^{-}$ and $K^{+} \rightarrow \mu^{+}v A' \rightarrow \mu^{+}v e^{+}e^{-}$ Dark photon and ALP searches in Drell-Yan processes: $qqbar \rightarrow A'/a \rightarrow l^{+}l^{-}$	 All unseen leptonic decay mode of η / η ' (SM predicts 10⁻⁶ -10⁻⁹) High precision studies on medium energy physics Nuclear models Chiral perturbation theory Non-perturbative QCD Isospin breaking due to the u-d quark mass difference Octet-singlet mixing angle
	Electromagnetic transition form-factors (important input for g-2)

Cost estimate (\$2022)

- Three funding scenarios considered
- Largest cost uncertainties
 - ADRIANO2 SiPM's (2x10⁶ 4x10⁶)
 - LGAD mechanics

□ No labor considered (usually, 1/3 of the total)

	Baseline option	Optimized option	Expensive option
Target+beam pipe	0.5	0.5	0.)
Vtx detector	0.93	3.11	2: .4
LGAD tracker	18.5	18.5	19.6
CTOF	0.6	1.3	3.)
ADRIANO2	47.7	23.9	47.7
Solenoid	0.2	0.2	0.2
Supporting structure	1	1	1
Trigger	1.3	1.3	5
DAQ	5	5	5
Total	69.7	54.8	1(1.8
Contingency 50%	34.9	27.4	5(.9
Grand total	104.6	82.2	112.7

Cost estimate (\$2022)

- Three funding scenarios considered
 - Largest cost uncertainties
- ADRIANO2 SiPM's $(2x10^6 4x10^6)$
- LGAD mechanics

Cost optimization is in progress

Based on new sensitivity studies (2025

Montecarlo campaign)

CTOF	0.6	1.3	3.)
ADRIANO2	47.7		47.7
Solenoid	0.2		0.2
Supporting structure	1		1
Trigger	1.3		5
DAQ	5	5	5
Total	69.7	54.8	1(1.8
Contingency 50%	34.9	27.4	5(.9
Grand total	104.6	82.2	152.7

REDTOP Collaboration

J. Barn, A. Mane Argonnie National Laborationy, (USA)

J. Comfort, P. Mauskopf, D. McFarland, L. Thomas Arizonia State University, (USA)

I. Pedraza, D. Leon, S. Escobar, D. Herrera, D. Silverio Benemérita Universidad Autónoma de Puebla, (Mexico)

W. Abdallah Faculty of Science, Cairo University, Giza, (Egypt)

D. Winn Fairfield University, (USA)

A. Aqahtani Georgetown University, (USA)

W. Abdallah Cairo University, Cairo (Egypt)

A. Kotwal Duke University, (USA)

M. Spannowski Durham University, (UK)

A. Liu Euclid Techlabs, (USA)

J. Dey, V. Di Benedetto, B. Dobrescu, D. Fagan, E. Gianfelice-Wendt, E. Hahn, D. Jensen, C. Johnstone, J. Johnstone, J. Klimer, G.Krajaio, T. Kobilaroik, A. Kronfeld, K. Krempetz, S. Los, M. May, A. Mazzacane, N. Mokhov, W. Pellico, A. Pla-Dalmau, V. Pronskikh, E. Ramberg, J. Rauch, L. Ristori, E. Schmidt, G. Selberg, G. Tassotto, Y.D. Tsai

Fermi National Accelerator Laboratory, (USA)

J. Shi Guangdong Provincial Key Laboratory of Nuclear Science, Institute of Quantum Matter, South China Normal University, I, Guangzhou 510006, (China)

R. Gandhi Harish-Chandra Research Institute, HBNI, Jhunsi (India)

S. Homiller Harvard University, Cambridge, MA (USA)

E. Pasisamar Indiana University (USA)

P. Sanchez-Puertas IFAE – Barcelona (Spain)

X. Chen, Q. Hu Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou (China)

C. Gatto¹¹ Istituto Nazionale di Fisica Nucleare – Sezione di Napoli, (Italy)

W. Baldini Istituto Nazionale di Fisica Nucleare – Sezione di Ferrara, (Italy)

R. Carosi, A. Kievsky, M. Miviani Istituto Nazionale di Fisica Nucleare – Sezione di Pisa, (Italy)

W. Krzemień, M. Silarski, M. Zielinski Jagiellonian University, Krakow, (Poland)

D. Guadagnoli Laboratoire d'Anne cy-le-Meux de Physique Théorique, (France)

D. S. M. Alves, S. Gonzalez-Solis de la Fuente, S. Pastore Los Alamos National Laboratory, (USA)

M. Berlowski National Centre for Nuclear Research – Warsaw, (Poland)

G. Blazey, A. Dychkant, K. Francis, M. Syphers, V. Zutshii, P. Chintalapati, T. Malla, M. Figora, T. Fletcher Northern Illinois University, (USA)

A Ismail Oklahoma State University, (USA) D. Egaña-Ugrinovic Perimeter Institute for Theoretical Physisos - Waterloo, (Canada)

S. Roy Physical Research Laboratory, Ahmediabad – Ahmediabad, (India)

Y. Kahn Princeton University – Princeton, (USA)

D. McKeen TRIUMF (Canada)

Z. Ye Tsinghua University, (China)

P. Meade Stony Brook University - New York, (USA)

A. Gutiémez-Rodriguez, M. A. Hemandez-Ruiz Universidad Autónoma de Zacatecas, (Mexico)

R. Escribano, P. Masjuan, E. Royo Universitat Autònoma de Barcelona, Departament de Física and Institut de Física d'Attes Energies, (Spain)

J. Jaeckel Universität Heidelberg, (Germany)

B. Kubis Universität Bonn, Helmholtz-Institut für Strahlen- und Kernphysik (Theorie) and Bethe Center for Theoretical Physics, (Germany)

C. Siligardi, S. Barbi, C. Mugoni Università di Modena e Reggio Emilia, (Italy)

L. E. Marcucci* Universita' di Pisa, (Italy)

M. Guida³ Università di Salemo, (Italy)

S. Charlebois, J. F. Pratte Université de Sherbrooke, (Canada)

L. Harland-Lang University of Oxford, (UK)

J. M. Berryman University of California Berkeley, (USA)

S. Gori University of California Santa Cruz, (USA)

R. Gardner, P. Paschos University of Chicago, (USA)

J. Konisberg University of Florida, (USA)

C. Mills⁵ University of Illinois Chicago, (USA)

M. Murray, C. Rogan, C. Royon, Nicola Minafra, A. Novikov, F. Gautier, T. Isidori University of Kansas, (USA)

S. Gardner, X. Yan University of Kentucky, (USA)

Y. Onel University of Iowa, (USA)

B. Batell, A. Freitas, M. Rai University of Pittsburgh, (USA)

M. Pospelov University of Minnesota , (USA) D. Gao

University of Science and Technology of China, (China)

K. Maamani C. Gatto - V. Di Benedetto

A. Kupso, Maja Olvegård University of Uppsala, (Sweden)

B. Fabela-Enriquez Vanderbilt University, (USA)

S. Tulin York University, (Canada)

15 Countries 62 Institutions 138 Collaborators

Storage & CPU

Expected data rates from the experiment

- About 0.5 MHz to be stored on tape
- □ ~0.56 MB/sec from L2
- ~9 PB/year to tape (assume 1.6 kb event size)

18x		Trigger	Input event rate	$Event\ size$	$Input \ data \ rate$	$Event\ rejection$	
LHCb		stage	Hz	bytes	bytes/s		
		Level 0	$7. \times 10^{8}$	$1.4 imes 10^3$	$9.8 imes 10^{11}$	$\sim \!\! 4.6$	Hardware
		Level 1	1.5×10^{8}	1.5×10^3	2.3×10^{11}	~ 60	
	1	Level 2	$2.5 imes 10^6$	1.5×10^3	$3.8 imes 10^9$	$\sim \!\! 4.5$	Software
		Storage	$0.56 imes 10^6$	$1.6 imes 10^3$	$0.9 imes 10^9$		

Data from DAQ and Montecarlo

- □ Montecarlo (~5x10¹¹ events)
- **D** Total: ~1.5 PB/year

CPU for Reconstruction Analysis and Montecarlo

- **120** million core-hours for Monte Carlo jobs
- **90** million core-hours for data reconstruction jobs
- □ Total: ~ 70 million core-hours / year

(estimates by projecting current OSG usage)

Montecarlo Campaign 2025

- In 2023 GSI Director (P. Giubellino) formally asked REDTOP Collaboration to submit a proposal to run at GSI (Germany)
- GSI could provide fewer protons (~1/10) than requred for REDTOP physics program
- Several modifications were made to the detector and target systems
- *The campaign tests the sensitivity of REDTOP to fewer protons*
- CERN could make available a similar integrated POT as GSI

Simulation schema

Event generation

•Step 1: Event generation: 1.5 x 10¹¹ events (1:10,000 of the expected interactions)

- *Geniehad* (C++, Fortran77, Fortran90) https://redtop.fnal.gov/the-geniehadeventgeneration-framework/
- I/O: root, hepevt, stdhep, lhe, lcio

Step 2: Geant4 simulation: 0.8 x 10¹¹ events

- *Slic* (*C*++)
- I/O: stdhep, lcio

Reconstruction/Analysis

- Step 3: Trigger
 - <u>Lcsim (j</u>ava)
 - I/O: lcio
- Step 4: Reconstruction
 - Lcsim (java)
 - I/O: lcio

Simulation Architecture

Evt generation GenieHad

simulation

slic/G4

TL0/TL1/Reco

lcsim/java

#events: runtime: memory: input: output:

input:

output:

20k ~2h÷8h (with a tail up to 18h) ~1250 MB none ~17MB

- Moderate need of resource
- *Requirements:*
 - 1CPU;
 - 950MB memory;
 - 2GB disk
- *Apptainer container with all software dependencies*
- *These stages are combined in the* #events: 5k • ~1h÷3h runtime: same job ~0.6-0.7MB memory: requirements: ~17 MB input: output: ~1.3 GB 1CPU; 1500MB memory; from previous stage #events: • 5GB disk runtime: 15 minutes memory: 0.8÷0.9 GB

~1.3GB data

~3MB

- Intermediate data are removed (transient) saving several PB of I/O
- Apptainer container with all software dependencies

REDTOP

REDTOP OSG Usage Statistics (01/24 - 05/25

Сс	re Hours per Project	total	CI	PU Hours per Project	total		Jo	b Count per Project	total
_	dune	108 Mil	5	CLAS12	77.0 Mil		-	LIGO	55.2 Mil
-	CLAS12	105 Mil	-	REDTOP	63.9 Mil)	-	dune	53.1 Mil
_	LIGO	102 Mil	-	WSU_SDHydro	57.0 Mil		-	IceCube	49.4 Mil
-	Recube	76.1 Mil	-	dune	54.7 Mil		-	PixleyLab	46.1 Mil
_	REDTOP	71.9 Mil	>-	LIGO	47.6 Mil		-	BiomedInfo	44.9 Mil
-	WSU_3DHydro	67.7 Mil	-	IceCube	46.3 Mil		-	WSU_3DHydro	43.9 Mil
-	PixleyLab	32.0 Mil	-	КОТО	22.5 Mil		-	FIU LI	37.2 Mil
_	кото	31.8 Mil	-	PixleyLab	21.4 Mil		-	REDTOP	24.3 Mil
-	ePIC	23.1 Mil		ePIC	19.1 Mil		-	000	10.2 Mil
_	cms.org.cern	18.3 Mil	-	UConn_Le	11.7 Mil		-	icarus	15.9 Mil
_	microboone	18.1 Mil	-	gluex	10.5 Mil		-	кото	15.6 Mil
-	xenon	17.5 Mil	-	Michigan_2023_Riles	9.25 Mil		-	microboone	14.6 Mil
-	gluex	16.1 Mil	-	microboone	8.87 Mil		-	OSG_OSGUS24	13.7 Mil
_	Caltech_2024_Reitze	15.3 Mil	-	fermilab	8.39 Mil		-	EvolSims	12.9 Mil
-	gm2	15.3 Mil	-	MSU_Berz	7.93 Mil		-	xenon	11.7 Mil
_	fermilab	14.5 Mil	-	PSI_Kaib	7.19 Mil		-	CLAS12	9.50 Mil
-	CMU_lsayev	14.3 Mil	-	xenon	7.28 Mil		_	CPSC_5520	7.77 Mil
_	icarus	13.5 Mil	-	CMU_Isayev	6.53 Mil		_	ePIC	7.47 Mil
-	UConn_Le	12.8 Mil	-	icarus	6.55 Mil		-	fermilab	7.39 Mil
-	cms.org.ku	11.9 Mil	-	UCBerkeley_Altman	6.13 Mil		-	UCBerkeley_Altman	7.17 Mil
-	SSGAforCSP	11.7 Mil	-	EvolSims	6.13 Mil		-	sbnd	6.95 Mil
-	Michigan_2023_Riles	10.4 Mil	-	gm2	5.39 Mil		-	UAB_Thyme	6.70 Mil
-	nova	9.61 Mil	-	cms.org.cern	5.18 Mil		_	SeattleU_CPSC_5520_2	6.62 Mil
_	EvolSims	9.40 Mil	-	BiomedInfo	5.02 Mil		_	MIT_submit	6.29 Mil
-	UCBerkeley_Altman	8.39 Mil	-	Caltech_2024_Reitze	4.97 Mil		-	nova	6.26 Mil
-	MSU_Berz	8.37 Mil	-	SSGAforCSP	4.74 Mil		-	gluex	4.94 Mil
-	PSI_Kaib	7.77 Mil	-	Vanderbilt_Paquet	4.36 Mil		-	LSU_Wilson	4.57 Mil
-	BiomedInfo	7.75 Mil	-	UCSD_Politis	4.04 Mil		-	CompBinFormMod	4.52 Mil
-	Rice_Mulligan	6.99 Mil	-	Syracuse_Nitz	3.66 Mil		-	DemoSims	4.31 Mil
_	LSU_Wilson	6.85 Mil	-	Rice_Mulligan	3.48 Mil		-	MSU_Berz	4.25 Mil
_	mu2e	5.99 Mil	-	NCSU_Hall	3.45 Mil		_	cms.org.cern	4.07 Mil
-	PortlandState_Venkata	5.64 Mil	-	CSUN_Katz	3.15 Mil		-	gm2	3.92 Mil
-	UAB_Thyme	5.59 Mil	-	FIU_Li	3.07 Mil		-	PSFmodeling	3.85 Mil
-	DemoSims	5.49 Mil	-	DemoSims	2.88 Mil		-	UCSD_Rappel	3.11 Mil
-	UCSD_Politis	5.44 Mil	-	UCSD_Xu	2.87 Mil		-	NCSU_Hall	3.08 Mil

Summary for 01/2024 - 05/2025 running:

- #jobs: 24.3M •
- WallHours: 71.9M
- Core-h: 71.9M
- CPU-h: 63.9M
- Eff: 89% 91%

Job efficiency - REDTOP

OSG Usage Statistics (01/24 - 05/25

OSG Daily Usage Statistics

REDTOP

OSG Yearly Usage Statistics for REDTOP project

Core Hours By Facility	total
SU ITS	25 Mil
- FermiGrid	12 Mil
MWT2 ATLAS UC	10 Mil
GLOW	3 Mil
AGLT2	2 Mil
Purdue Anvil	2 Mil
 Nebraska-Omaha 	1 Mil
UChicago	1 Mil
 Michigan HORUS 	1 Mil
IRISHEP-SSL-UCHICAGO	928 K
 Montana State RCI 	831 K
Clemson-Palmetto	816 K
BNL ATLAS Tier1	800 K
FANDM-ITS	767 K
UColorado_HEP	740 K
 Pervasive Technology Institute 	696 K
UConn-HPC	652 K
PSU LIGO	628 K
Beocat	595 K

University of Washington Resear 456 K

- Time range: 01/24 05/25
- Total Core Hours: 71.9 million
- Total jobs: 24.3 million

Conclusions

- Medium-sized experiments complement large facilities in a much shorter time scale and focus on the MeV-GeV region
- All meson factories: LHCb, B-factories, Dafne, J/psi have produced a broad spectrum of nice physics. An η / η' factory will do the same
- **REDTOP** has been designed specifically to study rare processes and to discover physics BSM in the MeV-GeV mass region
- Only experiment (with SHIP and HHaS) sensitive to all DM portals
- Very large physics reach for NP as well
- New detector techniques benefit the next generation of high intensity experiments
- Beam requirements could be met by several labs in US, Europe, and Asia

Thanks to OSG Collaboration Support and Pascal Paschos for their effort on pushing REDTOP forward

More details: <u>https://redtop.fnal.gov</u> and <u>https://arxiv.qrg/abs/2203.07651</u>

Backup Slides

Present & Future η Samples

	Technique	$\eta \rightarrow 3\pi^{o}$	$\eta ightarrow e^+e^-\gamma$	Total η mesons
CB@AGS	$\pi^- p \rightarrow \eta n$	9×10 ⁵		10 ⁷
CB@MAMI C&B	$\gamma p { ightarrow} \eta p$	1.8×10 ⁶	5000	$2 \times 10^7 + 6 \times 10^7$
BES-III	$e^+e^- \rightarrow J/\psi \rightarrow \eta\gamma + \eta \ hadrons$	6×10 ⁶		$1.1 \times 10^7 + 2.5 \times 10^7$
KLOE-II	$e + e - \rightarrow \Phi \rightarrow \eta \gamma$	6.5×10^{5}		~10 ⁹
WASA@COSY	$pp ightarrow \eta pp \ pd ightarrow \eta ^{3}He$			>10 ⁹ (untagged) 3×10 ⁷ (tagged)
CB@MAMI 10 wk (proposed 2014)	$\gamma p \rightarrow \eta p$	3×10 ⁷	1.5×10 ⁵	3×10 ⁸
Phenix	$d Au \rightarrow \eta X$			5×10 ⁹
Hades	$pp \rightarrow \eta pp \\ p Au \rightarrow \eta X$			4.5×10 ⁸
	Near future	e samples		
GlueX@JLAB (running)	$\gamma_{12\mathrm{GeV}}\mathbf{p} ightarrow \eta \mathbf{X} ightarrow \mathbf{neutrals}$			5.5×10 ⁷ /yr
JEF@JLAB (construction)	$\gamma_{12 \text{GeV}} p \rightarrow \eta \ X \rightarrow neutrals$			3.9×10 ⁵ /day
REDTOP (proposing)	$p_{1.8 \ GeV} Li o \eta X$			3.4×10 ¹³ /yr

The physics case for REDTOP

Physics case presented in 176-pp White Paper. Sensitivity studies based on ~ $10^{14} \eta$ mesons (3.3x10¹⁸ POT and 3-yr run), >30x10⁶ CPU-Hr on OSG+NICADD

15 processes fully simulated and reconstructed – 20 theoretical models benchmarked

- Four BSM portals
- Three CP violating processes requiring no μ-polarization measurement
- A fourth CP violating processes under study
- Three CP violating processes requiring μ-polarization measurement
- Two lepton flavor universality studies
- Two lepton flavor violation studies

Key detector parameters

- Large sensitivity to <17 Mev mass resonances (compared to WASA and KLOE)
- Tracking capable to reconstruct detached verteces up to ~100 cm
- Sensitivity to BR ~ $\mathcal{O}(10^{-11})$ (~ $\mathcal{O}(10^{-12})$ with pion beam)
- Detector optimization under way

REDTOP Computing Model

• Model architecture:

- Single-core computational workflow has proven to be well suited for the distributed High Throughput Computing (DHTC) environment of the OSG.
- Model already adopted by other small Collaborations (IceCube, XENON, et. al.)
- Storage:
 - DataStream from the L-2 farm will be staged at (FNAL) dCache storage and sent to tape (or wherever is cheaper when the experiment runs: FNAL at present)
 - *Stratum-0 server hosts a CVMFS repository of the REDTOP software*

CPU:

- Any (dedicated or opportunistic) OSG working node
- Member institutions can join the OSG federation and accept jobs from OSG's GlideinWMS job factory via a HostedCE deployment.

REDTOP Computing Model

- Typical jobs are submitted from an OSG Connect submit host. Data are delivered to the remote worker nodes via stashcp and software over CVMFS
- Data designated for long term storage will be archived to tape at a collaboration facility
- Collaboration institutions might set up their own submit hosts but the bulk of the access to the OSG would be from the Connect infrastructure at least in the beginning.
- We are investigating the adoption of Rucio for the data management to allocated storage provided by participating institutions.

REDTOP

REDTOP Baseline Computing Model

For more details: http://redtop.fnal.gov/wp-content/uploads/2020/05/redtop-compute_v3.pdf

C. Gatto - INFN & NIU

New particles & forces Vector Portal: $\eta \rightarrow \gamma A'$ with $A' \rightarrow l^+l^-$ or $\pi^+\pi^-$ Some BR sensitivity curves

Left plot: bump-hunt analysis. Right plot: detached-vertex analysis).

Theoretical models considered

- Piophobic QCD axion model (D. S. M. Alves)
 - Below KLOE sensitivity
 - the CELSIUS/WASA Collaboration observed 24 evts with SM expectation of 10
- **•** Heavy Axion Effective Theories

CP Violation from Dalitz plot mirror asymmetry in $\eta -> \pi^+ \pi^- \pi^0$

- **CP**-violation from this process is not bounded by EDM as is the case for the $\eta \rightarrow 4\pi$ process.
- **Complementary to EDM searches even in the case of T and P odd observables, since the flavor structure of the eta is different from the nucleus**
- *Current PDG limits consistent with no asymmetry*
- New model in GenieHad (collaboration with S. Gardner & J. Shi) based on <u>https://arxiv.org/abs/1903.11617</u>

RED	ieters				
				J	
$\#Rec. \ Events$	$\operatorname{Re}(\alpha)$	$\operatorname{Im}(\alpha)$	$\operatorname{Re}(eta)$	$\operatorname{Im}(\beta)$	p-value
10^8 (no-bkg)	3.3×10^{-1}	3.7×10^{-1}	4.4×10^{-4}	$5.6 imes 10^{-4}$	17%
Full stat. (no-bkg)	1.9×10^{-2}	$2.1 imes 10^{-2}$	2.5×10^{-5}	3.2×10^{-5}	17%
Full stat. (100%-bkg)	2.3×10^{-2}	$3.0 imes 10^{-2}$	3.5×10^{-5}	4.5×10^{-5}	16%

Test of discrete symmetries

CP Violation from the asymmetry of the decay planes in $\eta \rightarrow \mu^+ \mu^- e^+ e^-$ and $\eta \rightarrow \pi^+ \pi^- e^+ e^-$

- See: Dao-Neng Gao, /hep-ph/0202002 and P. Sanchez-Puertas, JHEP 01, 031 (2019)
- Requires the measurement of angle between pions and leptons decay planes

CP violation is related to asymmetries in $\eta \rightarrow \pi^+ \pi^- e^+ e^-$

$$A_{\phi} = \frac{N(\sin\phi\cos\phi > 0) - N(\sin\phi\cos\phi < 0)}{N(\sin\phi\cos\phi > 0) + N(\sin\phi\cos\phi < 0)}$$

CP-violation from µ–polarization

CP Violation in $\eta \rightarrow (\gamma, \pi^{\circ})\mu^{+}\mu^{-}$

From model: P. Masjuan and P. Sanchez-Puertas, JHEP 08, 108 (2016), 1512.09292 & JHEP 01, 031 (2019), 1810.13228.

 \Box Requires the measurement of μ -polarization to form the following asymmetries

FIG. 11. Kinematics of the process. The decaying muons' momenta in the η rest frame are noted as $p_{\mu^{\pm}}$, while the e^{\pm} momenta, $p_{e^{\pm}}^*$, is shown in the corresponding μ^{\pm} reference frame along with the momenta of the $\nu \bar{\nu}$ system. The \hat{z} axis is chosen along p_{μ^+} .

introduced two different muon's polarization asymmetries,

$$A_{L} = \frac{N(\cos\theta > 0) - N(\cos\theta < 0)}{N} = \text{Im}[4.1c_{\ell edq}^{2222} - 2.7(c_{\ell equ}^{(1)2211} + c_{\ell edq}^{2211})] \times 10^{-2}, \quad (47)$$

$$A_{\times} = \frac{N(\sin\Phi > 0) - N(\sin\Phi < 0)}{N} = \text{Im}[2.5c_{\ell edq}^{2222} - 1.6(c_{\ell equ}^{(1)2211} + c_{\ell edq}^{2211})] \times 10^{-3}, \quad (48)$$

REDTOP sensitivity to Wilson CP violating Wilson coefficients

Process	Trigger	Trigger	Trigger	Reconstruction	Total	Branching ratio
	L0	L1	L2	$+ \ analysis$		sensitivity
$\eta \to \mu^+ \mu^-$	66.3%	16.3%	51.9%	69.6%	3.9%	$2.7\times 10^{-8}\pm 3.0\times 10^{-10}$
Urqmd	21.7%	1.7%	22.2%	$8.6\times10^{-3}\%$	$7.0\times10^{-6}\%$	-

 $\Delta(c_{\ell equ}^{1122}) = 0.1 \times 10^{-1}, \quad \Delta(c_{\ell edq}^{1122}) = 0.1, \quad \Delta(c_{\ell edq}^{2222}) = 6.6 \times 10^{-2},$

C. Gatto - INFN & NIU

Lepton Universality Studies

LHCb latest results using B^+ \rightarrow \mu^+ \mu K^+ vs \ e^+ e^- K^+: 3.1\sigma discrepancy vs SM

 $\eta
ightarrow \mu^+ \mu^- \mu^+ \mu^-$, $e^+ e^- \mu^+ \mu^-$, $e^+ e^- e^+ e^-$

□ *Theoretical calculations at the 10⁻³ precision from Kampf, Novotný, Sanchez-Puertas (PR D 97, 056010 (2018))*

Beam Options for 10^{14} η mesons

*Required fwd tagging detector for He*³⁺⁺

Fully tagged production from neclear reaction: $p+De \rightarrow \eta +He_3$

Inel. interaction rate: ~ 13 - 130 GHz η/η' production rate: ~ 0.1 - 1 MHz

REDTO

Detector Requirements and Technology

REDTOP

- Sustain up to 0.7 GHz event rate with avg final state multiplicity of ~8 particles
- Calorimetric $\sigma(E)/E \sim 2-3\%/\sqrt{E}$
- High PID efficiency: 98/99% (e, γ), 95% (μ), 95% (π), 99.5%(p,n)
- $\sigma_{tracker}(t) \sim 30 psec, \ \sigma_{calorimeter}(t) \sim 80 psec, \ \sigma_{TOF}(t) \sim 50 psec$
- Low-mass vertex detector
- Near- 4π detector acceptance (as the η/η' decay is almost at rest).

charged tracks detection	EM + had calorimeter
LGAD Tracker	□ ADRIANO2 calorimeter (Calice+T1604)
4D track reconstruction for multihadron	ADRIANO3 rear section with Fe absorbers
rejection	PFA + Dual-readout+HG
□ Material budget < 0.1% r.l./layer	Light sensors: SiPM or SPADs
	96.5% coverage
Vertex reconstruction	Cerenkov Threshold TOF
Option 1: Fiber tracker (LHCb style)	Option 1: Quartz tiles
Established and low-cost technology	Established and low-cost technology
\square ~70 μm vertex resolution in x-y. Stereo layers	~50psec timing with T1604 prototype
Option 2: HV-MAPS (Mu3e style)	Option 2: EIC-style LGAD
 Low material budget (0.11 /8/luger) ~40µm vertex resolution in 3D 	~30-40 psec timing, but expensive
	33

Future Prospects for REDTOP

Baseline detector layout defined (with options for vtx and µpol detectors)

- Sensitivity studies helped to consolidate the detector requirements and to drive cost optimization
- VTX Fiber Tracker replaced by HV-MAPS detector
- Muon polarimeter requires further studies

Next steps:

- Initial funding from US agencies (mid-RI proposal \$2-10M)
- Prepare a CDR to support the proposal of the experiment to one (or more) of the interested laboratories
- Consolidate the detector R&D (ongoing)

Why the η meson is special?

It is a Goldstone boson

Symmetry constrains its QCD dynamics

It is an eigenstate of the C, P, CP and G operators (very rare in nature): $I^G J^{PC} = 0^+ 0^{-+}$

It can be used to test C and CP invariance.

All its additive quantum numbers are zero

$$Q = I = j = S = B = L = 0$$

All its possible strong decays are forbidden in lowest order by P and CP invariance, G-parity conservation and isospin and charge symmetry invariance.

EM decays are forbidden in lowest order by C invariance and angular momentum conservation

Its decays are not influenced by a change of flavor (as in K decays) and violations are "pure"

It is a very narrow state (Γ_{η} =1.3 KeV vs Γ_{o} =149 MeV)

Contributions from higher orders are enhanced by a factor of ~100,000

Excellent for testing invariances

The η decays are flavor-conserving reactions

JIAGIZUZA

Decays are free of SM backgrounds for

 η is an excellent laboratory to search for physics Beyond Standard Model

Nate FIOTHOLINBARINGI VII NIAMUVIU VIII & INTO

η/η' yield and background evaluation

Model	$p-Li\ cross\ section$	p-Li	<i>p</i> - <i>Target</i>	
		interaction proo.	mieraciion proo.	
Wellisch & Axen	2.01×10^{-25}	0.710	0.719	Inelastic interaction ra
Tripathi Light	1.96×10^{-25}	0.693	0.702	GHZ
$\mathbf{Incl}++$	1.60×10^{-25}	0.567	0.574	
Sihver et. al	1.51×10^{-25}	0.535	0.543	
Barashenkov	1.73×10^{-25}	0.612	0.620	
Shen et. al	2.0×10^{-25}	0.707	0.715	
Kox et. al	2.98×10^{-25}	1.06	1.07	
Average	$1.98 \pm 0.48 \times 10^{-25}$	0.70 ± 0.17	0.71 ± 0.17	

Evaluation of η/η' yield for 3.3x10¹⁸ POT (3.3 years running at 1x10¹⁸ POT/yr)

Simulation Framework For Physics&Detector Studies

Event generator: GenieHad

- Proprietary (not yet public) package interfacing standalone generators to

Package	Model	Туре	
Urqmd [210]	QMD	Microscopic many body approach	
Incl++ v6.2 [211]	INCL	Intranuclear cascade	
Gibuu v2019 [212]	BUU	time evolution of Kadanoff–Baym-equations	
PHSD v 4.0 [213]	HSD	covariant transport with NJL-type Lagrangian	
Jam v1.9 [214]	Cascade/RQMD.RMF/BUU	Multi-model - hybrid approach	
Dpmjet-III [240]	Dual Parton/ perturbative QCD	Multi-model approach	
Pythia 7, 8[239]	LUND	string hadronization model	
IAEA tables[241]	LUT of measured cross sections	Look-up tables based on ENDF (by IAEA)	
Intranuke[242]	Parametric		
ALPACA[243]	Alpaca	Bremsstrahlung of Axion-Like-Particles (ALPs)	

Simulation: slic

genie

- Geant4 interface from SLAC
- Proprietary adds-on for REDTOP specific detectors

Digitization, reconstruction, analysis: lcsim

- Java package from ILC and HPS (jlab)
- Geometry adds-on for REDTOP specific detectors, beam components, and magnetic fields
- Histograms and fitting in Jas3, Jas4app

η/η' yield and background evaluation

Model	$p-Li\ cross\ section$	p-Li	<i>p</i> - <i>Target</i>	
		interaction proo.	mieraciion proo.	
Wellisch & Axen	2.01×10^{-25}	0.710	0.719	Inelastic interaction ra
Tripathi Light	1.96×10^{-25}	0.693	0.702	GHZ
$\mathbf{Incl}++$	1.60×10^{-25}	0.567	0.574	
Sihver et. al	1.51×10^{-25}	0.535	0.543	
Barashenkov	1.73×10^{-25}	0.612	0.620	
Shen et. al	2.0×10^{-25}	0.707	0.715	
Kox et. al	2.98×10^{-25}	1.06	1.07	
Average	$1.98 \pm 0.48 \times 10^{-25}$	0.70 ± 0.17	0.71 ± 0.17	

Evaluation of η/η' yield for 3.3x10¹⁸ POT (3.3 years running at 1x10¹⁸ POT/yr)

Beam scheme for FNAL option (M. Syphers)

Single p pulse from booster ($\leq 4x10^{12}$ p) injected in the DR (former debuncher in anti-p production at Tevatron) at fixed energy (8 GeV)

Energy is removed by inserting 1 or 2 RF cavities identical to the one already planned (~5 seconds)

Slow extraction to REDTOP over ~40 seconds.

The 270° of betatron phase advance between the Mu2e Electrostatic Septum and REDTOP Lambertson is ideal for AP50 extraction to the inside of the ring.

Total time to decelerate-debunch-extract: 51 sec: duty cycle ~80%

Accelerator Physics Issues

0.015 0.010 0.005 0.000 × -0.005 -0.010 0.015 -0.015-0.010 -0.005 0.000 0.005 0.010 0.015

Transition Energy

- γ_t is where $\Delta f/f = 1/\gamma 2 \langle D/\rho \rangle = 0$; synchrotron motion stops momentarily, can often lead to beam loss
- beam decelerates from $\gamma = 9.5$ to $\gamma = 3.1$
- original Delivery Ring $\gamma_t = 7.6$
- a re-powering of 18 quadrupole magnets can create a $\gamma_{\rm t}$ = 10, thus avoiding passing through this condition
 - Johnstone and Syphers, Proc. NA-PAC 2016, Chicago (2016).

Resonant Extraction

- Mu2e will use 1/3-integer resonant extraction
- REDTOP can use same system, with use of the spare Mu2e magnetic septum
- initial calculations indicate sufficient phase space, even with the larger beam at the lower energies

Vacuum

- REDTOP spill time is much longer than for Mu2e
- though beam-gas scattering emittance growth rate 3 times higher at lower energy, still tolerable level

Beam Options at GSI/FAIR (near future)

Opportunities as fixt target exp.

HEST towards pion target
 1e11 p/spill (time structure)

OPTION A

Fixt target (SIS18)

- 1e11 p/spill (time structure flexible) at SIS18
- Residual beam might be used for Hades pion program
- Additional shielding and cave need to be evaluated
- High intensity needs exclusive proton operation

Fixt target (SIS100)

- p-bar target area
- 2e12 p/spill (time structure flexible) at SIS100
- Parallel operation possible due to p-LINAC
- Shielding and cave need to be evaluated
- Actual timeline beyond 2028

FAIR GmbH | GSI GmbH

Beam intensity: 1.8 GeV protons with 1e11/s

Daniel Severin

Beam Options at GSI (far future)

FAIR GmbH | GSI GmbH

Beam intensity: 1.8 GeV protons with 1e11/s

Daniel Severin

Beam Options at HIAF (near future)

Detector Requirements: BSM physics driven

LFU: Tagged lepton production from flavor-conserving decays

• excellent $e/\pi/\mu$ separation

QCD axion

Calorimetric sensitivity to M(γγ)~30MeV

17 MeV e⁺e⁻ state (Atomki experiment)

- Tracker sensitivity to $M(e^+e^-) \sim 20 \text{ MeV}$
- Electron ID at very low energy

CP violation with muons

• Muon polarimeter or high-granularity calorimeter

https://arxiv.org/pdf/2111.12739.p df (A. Crivellin, M. Hoferichter)

Subdetector Technologies

	Baseline (White paper)	Options
Target	Li foils: 10x 0.78mm	LH ₂ 11 cm
VTX	LHCb fiber tracker. REDTOP: 0.24m ² vs LHCb: 360m ²	CMOS (ITS3) or hybrid (fiber+1 layer CMOS)
Central tracker	LGAD 100µm/layer eq., no active cooling (30 psec/layer). REDTOP: 14m ² vs CMS: 16m ²	LGAD 120µm/layer eq., no active cooling (42 psec/layer)
TOF	1 layer 30x30x10 mm ³ JGS1 + Petiroc (50 psec/layer). Area: 3.7 m ²	2 layers, 30x30x10 or 20x20x10 mm ³ JGS1 + Liroc+Tsinghua TDC/PicoTDC (<30 psec/layer). Area: 9.4 m ²
Calorimeter	ADRIANO2: 53 layers 30x30x14 mm ³ SF57/cast scint (80 psec/cell) 800,000 tile pairs	ADRIANO2: 30 layers 30x30x14 mm ³ ZF2/ scint + 23 layers JGS1/Cu/scint (80 psec/cell) 400,000 tile pairs
μ- polarimeter	Not implemented	TBD