
Duct Tape, DAGs, and 
Determination:

 Snakemake at the Edge of HTCondor
or

"I Brought a Snake to a Bird Fight"

Justin Hiemstra



The two types of "Research Software"

(AI generated)

(AI generated)

(AI generated)

Type 1 Type 2



The two types of "Research Software"

(AI generated)

(AI generated)

(AI generated)

Type 1 Type 2



The two types of "Research Software"

(AI generated)

(AI generated)

(AI generated)

Type 1 Type 2



This is a story of running other people's "type 2" research 
software at scale



There is…

SPRAS – The "Signaling Pathway 
Reconstruction Streamliner"



SPRAS – The "Signaling Pathway 
Reconstruction Streamliner"

There is a lot of experimental 
protein-protein interaction data



SPRAS – The "Signaling Pathway 
Reconstruction Streamliner"

There is a lot of experimental 
protein-protein interaction data

It is often difficult to know which 
path from one node to another is 
the most likely "signaling pathway"



SPRAS – The "Signaling Pathway 
Reconstruction Streamliner"

There is a lot of experimental 
protein-protein interaction data

It is often difficult to know which 
path from one node to another is 
the most likely "signaling pathway"

There are many published "type 2" 
algorithms that try to answer this 
question, but few are widely 
adopted



SPRAS – The "Signaling Pathway 
Reconstruction Streamliner"

What if we created a tool that streamlined 
running as many of these algorithms as 
possible?



SPRAS – The "Signaling Pathway 
Reconstruction Streamliner"

What if we created a tool that streamlined 
running as many of these algorithms as 
possible?

"All problems in computer science can be solved by 
another level of indirection, except for the problem 
of too many layers of indirection." – David Wheeler



SPRAS – The "Signaling Pathway 
Reconstruction Streamliner"

What if we created a tool that streamlined 
running as many of these algorithms as 
possible?

"By indirections find directions out" - Polonius, Hamlet



Finding Directions Out



Workflow Management

• Rule-based & declarative
• Dependency resolution – builds 

a DAG of work
• Capable of job skipping
• Pythonic
• Widely used in the 

Bioinformatics community



Workflow Management

• Rule-based & declarative
• Dependency resolution – builds 

a DAG of work
• Capable of job skipping
• Pythonic
• Widely used in the 

Bioinformatics community

Data1 Data2

Derived1 Derived2



Why not just use DAGMan?

SPRAS existed before any attempt to integrate with HTCondor

An early design constraint was to keep the overall architecture 
flexible without requiring that SPRAS users have access to 
HTCondor



What would it take…



What would it take…
… to run one algorithm with SPRAS on one dataset as only one job on 
one EP?



What would it take…
… to run one algorithm with SPRAS on one dataset as only one job on 
one EP?

1. Containerize the software
2. Create a submit file
3. Submit
4. Solve problems, squash bugs
5. goto 3;



What would it take…
… to run one algorithm with SPRAS on one dataset as only one job on 
one EP?

1. Containerize the software
2. Create a submit file
3. Submit
4. Solve problems, squash bugs
5. goto 3;

The first appreciable hurdle was that containerizing SPRAS itself 
introduced a need to run nested containers



Nested Containers in the OSPool

EP Container

SPRAS Container

Algorithm 
Container

- HTCondor 
Software

- EP Config

- Other stuff 
(probably, but 
not my 
interest)

- SPRAS
- Python
- Snakemake
- Job inputs

- Whatever this 
"type 2" research 
code needs to run
- Derived job inputs



Nested Containers in the OSPool

EP Container

SPRAS Container

Algorithm 
Container

- HTCondor 
Software

- EP Config

- Other stuff 
(probably, but 
not my 
interest)

- SPRAS
- Python
- Snakemake
- Job inputs

- Whatever this 
"type 2" research 
code needs to run
- Derived job inputs

Nested containers in a heterogeneous, 
unprivileged environment took me a 
while to figure out



Nested Containers in the OSPool

EP Container

SPRAS Container

Algorithm 
Container

- HTCondor 
Software

- EP Config

- Other stuff 
(probably, but 
not my 
interest)

- SPRAS
- Python
- Snakemake
- Job inputs

- Whatever this 
"type 2" research 
code needs to run
- Derived job inputs

Nested containers in a heterogeneous, 
unprivileged environment took me a 
while to figure out

• Docker is not your friend, but 
Apptainer is

• Barring significant architectural 
changes meant converting 
Docker→ .sif in the job

• A very opaque, difficult 
environment to develop in/for

• The secret: starting apptainer 
from "unpacked" .sif images 
(--sandbox)



Nested Containers in the OSPool

EP Container

SPRAS Container

Algorithm 
Container

- HTCondor 
Software

- EP Config

- Other stuff 
(probably, but 
not my 
interest)

- SPRAS
- Python
- Snakemake
- Job inputs

- Whatever this 
"type 2" research 
code needs to run
- Derived job inputs

Nested containers in a heterogeneous, 
unprivileged environment took me a 
while to figure out

• Docker is not your friend, but 
Apptainer is

• Barring significant architectural 
changes meant converting 
Docker→ .sif in the job

• A very opaque, difficult 
environment to develop in/for

• The secret: starting apptainer 
from "unpacked" .sif images 
(--sandbox)

Everything is simple when you know how



Teaching the Snake to Fly The Bird

The next step was getting Snakemake to 
manage its own "jobs"

Luckily, right around this time Snakemake 
made an "Executor" plugin interface

To my surprise, I wasn't the only one working 
on this!

This lets Snakemake submit each of its 
"jobs" as an HTCondor job using the Python 
bindings

The Executor manages/monitors jobs and 
output so it knows when to submit the next 
unit of work

Jannis Speer @ University 
of Dortmund

Original HTCondor 
Executor Author



Access Point

Snakemake

Execution Point

Shared 
Filesystem



Access Point

Snakemake

Submit File

1. Convert "snake 
job" into submit file

Constructs args to 
pass to self at the 
EP. These scope EP 
snakemake to run 
only this job

Execution Point

Shared 
Filesystem



Access Point

Snakemake

Submit File

2. Place the 
job

Execution Point

Shared 
Filesystem

1. Convert "snake 
job" into submit file

Constructs args to 
pass to self at the 
EP. These scope EP 
snakemake to run 
only this job



Access Point

Snakemake

Submit File

2. Place the 
job

Execution Point

Snakemake

job-specific 
arguments

3. Snakemake is 
re-invoked at the EP 
args that trigger "this 
job"

Shared 
Filesystem

1. Convert "snake 
job" into submit file

Constructs args to 
pass to self at the 
EP. These scope EP 
snakemake to run 
only this job



Access Point

Snakemake

Submit File

2. Place the 
job

Execution Point

4. Snakemake at the AP 
monitors remote job for 
completion and checks 
locally for output

Snakemake

job-specific 
arguments

3. Snakemake is 
re-invoked at the EP 
args that trigger "this 
job"

Shared 
Filesystem

1. Convert "snake 
job" into submit file

Constructs args to 
pass to self at the 
EP. These scope EP 
snakemake to run 
only this job



Access Point

Snakemake

5. When output is 
complete, move onto 
next job using 
previous output as 
new input



Shared Filesystems, Shared Suffering



Shared Filesystems, Shared Suffering

When you assume a shared filesystem, you make an @$$ out of 
you, me and the rest of the cluster



Shared Filesystems, Shared Suffering

When you assume a shared filesystem, you make an @$$ out of 
you, me and the rest of the cluster

It looked like Snakemake already had had a runtime flag for me
--shared-fs-usage none

Would it work for me off the shelf??



no



What exactly does this option do?

Some of the "job-specific" args are modified to switch absolute 
paths to relative → A promising thing to see!

It does try to handle transferring input/output and the 
executable… just in the wrong way



Snakemake Transfer Model

Snakemake Remote 
Execution Point

Executor



Snakemake Transfer Model

Snakemake Remote 
Execution Point

1. Transfer input

Executor



Snakemake Transfer Model

Snakemake Remote 
Execution Point

1. Transfer input

Executor

2. Hand off job



Snakemake Transfer Model

Snakemake Remote 
Execution Point

1. Transfer input

Executor

2. Hand off job

3. Translate Snakemake 
execution into remote 
execution and run



Snakemake Transfer Model

Snakemake Remote 
Execution Point

1. Transfer input

Executor

2. Hand off job

3. Translate Snakemake 
execution into remote 
execution and run



Adjusted Snakemake Transfer Model*

Snakemake Remote 
Execution PointExecutor

1. Hand off job, telling 
the executor plugin the 
executor knows how to 
transfer its own 
input/output

2. The executor adds these to 
transfer_input_files,
transfer_output_files

(*required upstream changes – Snakemake maintainers are really great to work with!)

HTCondor

3. HTCondor does its thing 
and everyone's happy



Liftoff

After working through all these (more nuanced than I'm 
presenting) issues over the course of a few months… things 
started working

But there were still two things that annoyed me about the setup
1. Running condor_watch_q doesn't pick up jobs submitted 

after the initial invocation
2. If I shut my laptop…



"Snakemake Long"
Access Point

"Snakemake 
Long" (submit)

Execution 
Point



"Snakemake Long"
Access Point

"Snakemake 
Long" (submit)

"Snakemake Long" 
(execute)

Execution 
Point

1. "Snakemake 
Long" submits a 
local universe job



"Snakemake Long"
Access Point

"Snakemake 
Long" (submit)

"Snakemake Long" 
(execute)

Snakemake

Execution 
Point

1. "Snakemake 
Long" submits a 
local universe job

2. The same script is 
re-invoked in a way 
that launches 
regular snakemake 
with the executor



"Snakemake Long"
Access Point

"Snakemake 
Long" (submit)

"Snakemake Long" 
(execute)

Snakemake

Execution 
Point

1. "Snakemake 
Long" submits a 
local universe job

2. The same script is 
re-invoked in a way 
that launches 
regular snakemake 
with the executor

3. The rest of the setup 
looks the same – the 
executor submits 
snake jobs from the 
local universe job



Next Steps

• The file transfer mechanisms we've discussed are binary – 
everything comes from a shared fs or nothing comes from it



Next Steps

• The file transfer mechanisms we've discussed are binary – 
everything comes from a shared fs or nothing comes from it

• Snakemake doesn't provide a good way to remap file 
mounts/names between AP→EP?



Next Steps

• The file transfer mechanisms we've discussed are binary – 
everything comes from a shared fs or nothing comes from it

• Snakemake doesn't provide a good way to remap file 
mounts/names between AP→EP?

• SPRAS jobs still pull algorithm containers within the job – 
this is bad



Next Steps

• The file transfer mechanisms we've discussed are binary – 
everything comes from a shared fs or nothing comes from it

• Snakemake doesn't provide a good way to remap file 
mounts/names between AP→EP?

• SPRAS jobs still pull algorithm containers within the job – 
this is bad

• We also want to monitor the inner container's resources



Next Steps

• The file transfer mechanisms we've discussed are binary – 
everything comes from a shared fs or nothing comes from it

• Snakemake doesn't provide a good way to remap file 
mounts/names between AP→EP?

• SPRAS jobs still pull algorithm containers within the job – 
this is bad

• We also want to monitor the inner container's resources
• I haven't even touched getting this to work with my other 

favorite bird 



One key takeaway

"Condor already handles problem X, so just do Y in your 
workflow" is a dangerous sentiment

There's a lot of value in designing your tools to fit the 
researcher's needs instead of demanding they fit their workflows 
to your tools

Just because you have a distributed hammer doesn't mean 
everything has to look like a thumb



Useful Links
SPRAS:
https://github.com/reed-CompBio/spras

HTCondor Snakemake Executor:
https://github.com/htcondor/snakemake-executor-plugin-htcondor

Jannis's Original Snakemake Executor:
https://github.com/jannisspeer/snakemake-executor-plugin-htcondor

https://github.com/reed-CompBio/spras
https://github.com/htcondor/snakemake-executor-plugin-htcondor
https://github.com/jannisspeer/snakemake-executor-plugin-htcondor


Acknowledgement

This material is based upon work supported by the National Science 
Foundation under Cooperative Agreements DBI-2233968. Any opinions, 
findings, and conclusions or recommendations expressed in this 
material are those of the author(s) and do not necessarily reflect the 
views of the National Science Foundation.


