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The CMS experiment at CERN

● High Energy Physics general-purpose experiment                                                                                                                                                                                
recording proton-proton collisions at the LHC at CERN
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● Experimental data is stored, distributed, 
reconstructed, and analyzed, comparing 
to simulated data (Monte-Carlo)

○ Hundreds of PBs per year



The computing landscape - the WLCG

● Data traditionally analyzed using Worldwide LHC Computing Grid (WLCG) 
resources

○ Global collaboration of around 170 computing centers
○ Access based on dedicated resources (pledges)
○ Over 1M CPU cores and 2 EB in data storage
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The CMS Submission Infrastructure Group

● Part of CMS Offline and Computing in charge of:
○ Organizing HTCSS and GlideinWMS operations in 

CMS, in particular of the Global Pool, an infrastructure 
where reconstruction, simulation, and analysis of 
physics data takes place

○ Communicate CMS priorities to the development 
teams of GlideinWMS and Condor

● In practice:
○ We operate a set of federated pool of resources 

distributed over 70 Grid sites, plus non-Grid 
resources

○ Join them into a Global Pool of resources 
managed by HTCondor
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The CMS SI: federated HTCondor pools

Types of access point

Types of execution point
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HTCondor in support of CMS data taking
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As an example of the many capabilities our HTCondor setup provides CMS with, consider our 
submission infrastructure support in the mission-critical task of low-latency CMS detector data 
processing (Tier-0 tasks)  

Flocking from CERN to Global pool resources for expanded capacity Flexible dynamic partitioning of resources for 8 and 16-core Tier-0 jobs



Why Monitoring Matters

● Scale & Complexity
○ E.g.: Managing a Global Pool spanning 70+ sites and 

hundreds of thousands of cores requires continuous insight 
into system behavior

● Reliability & Performance
○ Monitoring enables early detection of issues, resource 

bottlenecks, and inefficiencies in job execution and 
resource utilization

● Operational Visibility
○ Critical for troubleshooting, planning, and maintaining trust 

in automated scheduling and resource provisioning

● Based on CERN MONIT Infrastructure
○ Unified monitoring framework across CMS computing
○ Metrics sent every 12 minutes from all components
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Monitoring of the CMS Pools (I)

● HTCondor jobs and daemons
○ Job Monitoring – 

from condor_q: state, runtime, efficiency
○ Machine Monitoring –

from condor_status: slot availability, 
partitionable resources, site status

○ Scheduler & Negotiator & Collector– 
from condor_status -sched (-negotiator) 
(-coll): match-making and negotiation 
cycles, status of demons, duty cycle

Job Monitoring … 8



Monitoring of the CMS Pools (II)

Schedd monitoring Negotiator monitoring

Machine monitoring Collector monitoring 9



Monitoring glideinWMS Components

Purpose
To complement HTCondor monitoring by capturing the full lifecycle of pilot-based workload submission, 
from factory to site.

● Data Collection
○ Custom scripts extract metrics from glideinWMS components every 12 minutes, and 

publish to Elasticsearch.

● Covered Components
○ Frontend – submission requests, resource pressure, and constraints
○ Factory – glidein submission success/failure, per-entry status, site 

responsiveness
○ Pilots – status, lifespan, errors, and site-level anomalies

● Pilot Log Aggregation
○ A dedicated log machine collects logs from all factories using rsync
○ Logs are indexed and exposed via the GlideMon web tool for inspection

and troubleshooting
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Frontend monitor

● Track pilot requests sent from
the frontend to each factory over time.

● Operational insights
○ Helps identify loss of site pressure, e.g., when no 

jobs are queued for a given site
■ E.g.: The site drained due to lack of demand (idle 

jobs not matching site requirements)
○ Useful for catching factory-side failures, such as 

misconfigurations or problems after updates
■ Also, wrong description of workload resource 

requirements
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Lack of pressure

Issue with update 
on factories



Factories monitor

Purpose
Monitor pilot startup and validation issues across sites to ensure reliable job execution.

Key Error Categories

● Startup Failures: Pilots fail to launch on the CE or batch system (e.g., 
condor_startd not initializing)

● Validation Failures: Pilot launches, but fails the validation script (e.g., missing 
dependencies, misconfiguration)

● Idle Pilots: Pilot runs and connects to the collector, but no jobs are matched or 
start

Operational Use

● This plot highlights problematic sites with recurring validation issues
● Enables prompt action: open GGUS tickets or contact site admins directly
● Essential for keeping the pool healthy and minimizing wasted resources

Example
 A persistent spike in validation failures at a specific site typically indicates:

● Misconfigured worker nodes
● Broken CVMFS, missing CMS environment
● Changes in site middleware or OS upgrades not compatible with pilot setup
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Pilot logs

Why Pilot Logs Matter

● Complement monitoring metrics with low-level detail from actual 
pilot execution

● Critical for diagnosing site-specific issues that are not visible 
through high-level metrics

● Helps understand pilot lifecycle failures, environment problems, or 
misbehaving nodes

Architecture Overview

● Each factory collects logs from running pilots
● Logs are transferred via rsync to a central log machine
● Logs are indexed and served via the GlideMon interface
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Proactive Alerting

● Enables rapid response to 
failures or anomalies

● Reduces downtime by catching 
issues before they impact users

● Complements dashboards and log 
analysis with real-time 
notifications

● Built on top of CERN MONIT + 
Elastic/Kibana stack
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Conclusions

● CMS relies on a large-scale, federated HTCondor infrastructure to execute 
data processing, simulation, and analysis across 70+ grid sites.

● Monitoring is essential to ensure reliability, efficiency, and scalability at all 
layers — from HTCondor daemons to glideinWMS components and pilot logs.

● We have built a comprehensive, modular monitoring ecosystem leveraging 
CERN MONIT, custom scripts, log aggregation, and real-time alerts.

● This system enables proactive operations, fast diagnosis, and effective 
collaboration with site admins to resolve issues and maintain a healthy global 
pool.
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Evolution of total CPU capacity managed by CMS with 
HTCondor over the years


