
Operating a Federated HTCondor 
Infrastructure: Monitoring and Management for 

CMS Computing 
Bruno Coimbra, M. Mascheroni, A. Pérez-Calero Yzquierdo, 

F. Von Cube, V. Zokaite, H. Kim
for the CMS Collaboration

                       Throughput Computing 2025



The CMS experiment at CERN

● High Energy Physics general-purpose experiment                                                                                                                                                                                
recording proton-proton collisions at the LHC at CERN

2

● Experimental data is stored, distributed, 
reconstructed, and analyzed, comparing 
to simulated data (Monte-Carlo)

○ Hundreds of PBs per year



The computing landscape - the WLCG

● Data traditionally analyzed using Worldwide LHC Computing Grid (WLCG) 
resources

○ Global collaboration of around 170 computing centers
○ Access based on dedicated resources (pledges)
○ Over 1M CPU cores and 2 EB in data storage

3



The CMS Submission Infrastructure Group

● Part of CMS Offline and Computing in charge of:
○ Organizing HTCSS and GlideinWMS operations in 

CMS, in particular of the Global Pool, an infrastructure 
where reconstruction, simulation, and analysis of 
physics data takes place

○ Communicate CMS priorities to the development 
teams of GlideinWMS and Condor

● In practice:
○ We operate a set of federated pool of resources 

distributed over 70 Grid sites, plus non-Grid 
resources

○ Join them into a Global Pool of resources 
managed by HTCondor

Central 
Manager

Access 
Point

GlideinWMS 
Frontend

Pilot (aka Glidein)

Execute 
Point

GlideinWMS 
Factory

4



The CMS SI: federated HTCondor pools

Types of access point

Types of execution point

5



HTCondor in support of CMS data taking

6

As an example of the many capabilities our HTCondor setup provides CMS with, consider our 
submission infrastructure support in the mission-critical task of low-latency CMS detector data 
processing (Tier-0 tasks)  

Flocking from CERN to Global pool resources for expanded capacity Flexible dynamic partitioning of resources for 8 and 16-core Tier-0 jobs



Why Monitoring Matters

● Scale & Complexity
○ E.g.: Managing a Global Pool spanning 70+ sites and 

hundreds of thousands of cores requires continuous insight 
into system behavior

● Reliability & Performance
○ Monitoring enables early detection of issues, resource 

bottlenecks, and inefficiencies in job execution and 
resource utilization

● Operational Visibility
○ Critical for troubleshooting, planning, and maintaining trust 

in automated scheduling and resource provisioning

● Based on CERN MONIT Infrastructure
○ Unified monitoring framework across CMS computing
○ Metrics sent every 12 minutes from all components

7



Monitoring of the CMS Pools (I)

● HTCondor jobs and daemons
○ Job Monitoring – 

from condor_q: state, runtime, efficiency
○ Machine Monitoring –

from condor_status: slot availability, 
partitionable resources, site status

○ Scheduler & Negotiator & Collector– 
from condor_status -sched (-negotiator) 
(-coll): match-making and negotiation 
cycles, status of demons, duty cycle

Job Monitoring … 8



Monitoring of the CMS Pools (II)

Schedd monitoring Negotiator monitoring

Machine monitoring Collector monitoring 9



Monitoring glideinWMS Components

Purpose
To complement HTCondor monitoring by capturing the full lifecycle of pilot-based workload submission, 
from factory to site.

● Data Collection
○ Custom scripts extract metrics from glideinWMS components every 12 minutes, and 

publish to Elasticsearch.

● Covered Components
○ Frontend – submission requests, resource pressure, and constraints
○ Factory – glidein submission success/failure, per-entry status, site 

responsiveness
○ Pilots – status, lifespan, errors, and site-level anomalies

● Pilot Log Aggregation
○ A dedicated log machine collects logs from all factories using rsync
○ Logs are indexed and exposed via the GlideMon web tool for inspection

and troubleshooting

10



Frontend monitor

● Track pilot requests sent from
the frontend to each factory over time.

● Operational insights
○ Helps identify loss of site pressure, e.g., when no 

jobs are queued for a given site
■ E.g.: The site drained due to lack of demand (idle 

jobs not matching site requirements)
○ Useful for catching factory-side failures, such as 

misconfigurations or problems after updates
■ Also, wrong description of workload resource 

requirements

11

Lack of pressure

Issue with update 
on factories



Factories monitor

Purpose
Monitor pilot startup and validation issues across sites to ensure reliable job execution.

Key Error Categories

● Startup Failures: Pilots fail to launch on the CE or batch system (e.g., 
condor_startd not initializing)

● Validation Failures: Pilot launches, but fails the validation script (e.g., missing 
dependencies, misconfiguration)

● Idle Pilots: Pilot runs and connects to the collector, but no jobs are matched or 
start

Operational Use

● This plot highlights problematic sites with recurring validation issues
● Enables prompt action: open GGUS tickets or contact site admins directly
● Essential for keeping the pool healthy and minimizing wasted resources

Example
 A persistent spike in validation failures at a specific site typically indicates:

● Misconfigured worker nodes
● Broken CVMFS, missing CMS environment
● Changes in site middleware or OS upgrades not compatible with pilot setup

12



Pilot logs

Why Pilot Logs Matter

● Complement monitoring metrics with low-level detail from actual 
pilot execution

● Critical for diagnosing site-specific issues that are not visible 
through high-level metrics

● Helps understand pilot lifecycle failures, environment problems, or 
misbehaving nodes

Architecture Overview

● Each factory collects logs from running pilots
● Logs are transferred via rsync to a central log machine
● Logs are indexed and served via the GlideMon interface

13



Proactive Alerting

● Enables rapid response to 
failures or anomalies

● Reduces downtime by catching 
issues before they impact users

● Complements dashboards and log 
analysis with real-time 
notifications

● Built on top of CERN MONIT + 
Elastic/Kibana stack

14



Conclusions

● CMS relies on a large-scale, federated HTCondor infrastructure to execute 
data processing, simulation, and analysis across 70+ grid sites.

● Monitoring is essential to ensure reliability, efficiency, and scalability at all 
layers — from HTCondor daemons to glideinWMS components and pilot logs.

● We have built a comprehensive, modular monitoring ecosystem leveraging 
CERN MONIT, custom scripts, log aggregation, and real-time alerts.

● This system enables proactive operations, fast diagnosis, and effective 
collaboration with site admins to resolve issues and maintain a healthy global 
pool.

15



Acknowledgements

● Congratulations from the CMS experiment on the 40 Years of the Condor 
Project Commemoration!

● … And our deepest gratitude for the many years of successful collaboration!

● Looking forward to many more years of the HTCondor technology suite in 
support of CMS scientific programme!



Backup slides



Evolution of total CPU capacity managed by CMS with 
HTCondor over the years


