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Open Questions in the Standard Model

• Fermion mass and mixing puzzle: Why 3 families? How do
mass-mixing hierarchies arise?

• How do neutrino masses arise?

• What particle constitutes dark matter in the universe?

• How is the strong CP problem solved?

• What is the origin of matter-antimatter asymmetry in the universe?

• How is inflation realized?

• How is the Higgs boson mass stabilized?

• What is the theory of quantum gravity?
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Addressing Open Questions with
Flavor Gauge Symmetry

A framework with a family-dependent U(1)F gauge symmetry
can address many of the open questions

• Fermion mass-mixing hierarchies explained by Froggatt-Nielsen
mechanism with the help of U(1)F gauge symmetry

• Gauge anomaly cancellation requires presence of right-handed
neutrinos which lead to neutrino masses via seesaw mechanism

• An accidental global symmetry is realized within the framework with
a QCD anomaly leading to axion, solving the strong CP problem

• The axion is of high quality owing to the U(1)F gauge symmetry,
and constitutes the dark matter of the universe

• Predictive framework for baryogenesis via leptogenesis

• Scalar fields used for gauge symmetry breaking can serve as inflaton
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Understanding Particle Masses
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Fermion Mass Hierarchy from Gauged U(1)F
• Hierarchical structure of fermion masses and mixings can be

explained with a family-dependent U(1)F symmetry. Usually U(1)F
is assumed to be global, here we demand it to be a local symmetry.

• Order one differences in flavor charges can lead to hierarchical mass
matrices via the Froggatt-Nielsen mechanism.

LYuk ⊃ y f
ijFiF

c
j H

(
X (∗)

ΛFN

)nfij

• X is the flavon field, nfij are positive integers, ΛFN is the flavor
cut-off scale with a small parameter ϵ defined as

ϵ ≡ ⟨X ⟩
ΛFN

∼ 0.22

• With all the Yukawa couplings y f
ij being order one observed mass

hierarchies can be explained. Lighter fermion masses have higher
powers of ϵ.

• Eg: (mt ,mc ,mu) ∼ (1, ϵ4, ϵ8) v with flavor charges (0, 2, 4).
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CP Invariance of Strong Interactions

• Strong interactions appear to conserve Parity (P) and Time Reversal
(T ) symmetries, and therefore also CP symmetry. However, QCD
Lagrangian admits a source of P and T violation:

LQCD ⊃ θQCD
g2
s

32π2
GµνG̃

µν

• Chiral rotations on the quark fields can be done, but the parameter

θ = θQCD +ArgDet(MQ)

is invariant. It contributes to neutrton electric dipole momnent
dn ≃ 10−16 θ e-cm.Current limits require θ ≤ 10−10, which is the
strong CP problem

• Axion is proposed to solve this problem dynamically
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Axion Solution to Strong CP Problem
• The Peccei-Quinn (PQ) mechanism, which leads to a light

pseudoscalar particle, the axion (a), is an elegant solution to the
strong CP problem Peccei, Quinn (1977)

• The PQ mechanism assumes a global U(1)PQ symmetry that has a
QCD anomaly. This U(1) is spontaneously broken by a Higgs scalar,
and also explicitly by the QCD anomaly term

• Axion is the pseudo-Goldstone boson associated with the U(1)PQ
symmetry breaking. The QCD anomaly induces a coupling of axion
to the gluon field so that

L =
g2
s

32π2

(
θ +

a

fa

)
GµνG̃

µν

• This coupling in turn induces a potential for the axion field,

V ≈ Λ4 cos

(
θ +

a

fa

)
which upon minimization dynamically sets θ + a

fa
= 0
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Axion Quality Problem
• Quantum gravity is expected to break all global symmetries,

including U(1)PQ . This gives rise to the axion quality problem

• For example, a gravity-induced term in the Higgs potential of
canonical axion models (DFSZ and KSVZ),

Vgravity =
κ

MPl
|Φ|4(e iδΦ+ h.c .)

would shift the vacuum value θ + a
fa
= 0

• Minimizing the potential in presence of the quantum gravity
correction one has

∆θ ≃ κ sin δ

2
√
2

f 5a
Λ4MPlN2

• For currently favored values of fa = (109 − 1012) GeV, with Λ ≃ 200
MeV and MPl = 1.22× 1019 GeV, one finds the limits

κ sin δ ≤ {10−38 − 10−53}

• This is rather severe, much worse than the strong CP problem itself!
Holman et. al. (1992); Kamionkowski, March-Russell (1992); Barr, Seckel (1992); Ghigna,
Lusignoli, Roncadelli (1992)
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Attempts to Solve Axion Quality Problem

• Various ideas have been suggested:

• Gauge symmetries leading to accidental U(1)PQ Barr, Seckel (1992); Babu, Barr

(1993); Qiu, Yang, Yanagida (2023); Di Luzio (2020); Ardu et. al. (2020); Babu, Dutta, Mohapatra (2024)

• Composite axion Randall (1992); Lillard, Tait (2018); Gaillard, Gavela, Houtz, Quilez, Del Rey (2018);

Lee, Yin (2019); Vechi (2021); Contino, Podo Rivello (2022); Cox, Gherghetta, Paul (2023)

• Discrete gauge symmetries Babu, Gogoladze, Wang (2003); Hook (2018)

• Mirror world Berezhiani, Gianfagna, Giannotti (2001); Hook, Kumar, Liu, Sundrum (2022)

• Extra dimensional setups Choi (2004); Nakai, Suzuki (2021); Cox, Gherghetta, Ngyuen (2021);

Reece (2024); Craig, Konsgrov (2024)

• String theory axion Svrcek, Witten (2006)

• Realizing accidental PQ symmetry from a gauge symmetry is
nontrivial, since PQ symmetry should have a QCD anomaly, but the
original gauge symmetry has no anomaly

• In the rest of the talk I shall present several models with gauged
U(1) and discuss briefly phenomenology of successful models
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General Framework for Gauged Flavor U(1)F

• Flavor charges of fermions:

Qi (3, 2,
1

6
) = (q1, q2, q3), uc

i (3
∗
, 1,− 2

3
) = (u1, u2, u3), dc

i (3
∗
, 1,

1

3
) = (d1, d2, d3),

Li (1, 2,−
1

2
) = (l1, l2, l3), eci (1, 1, 1) = (e1, e2, e3), Ni (1, 1, 0) = (n1, n2, n3)

• Two Higgs doublets (Hu,Hd) and two singlets (X ,S) are used, as in
DFSZ axion model. The additional singlet is needed to break the
U(1)F gauge symmetry. X acts as the flavon.

Hu(1, 2,
1

2
) = hu, Hd (1, 2,−

1

2
) = hd , X (1, 1, 0) = qX , S(1, 1, 0) = qS

• Yukawa couplings:

LYukawa = yu
ij Qiu

c
j Hu

(
X (∗)

ΛFN

)nuij

+ yd
ij Qid

c
j Hd

(
X (∗)

ΛFN

)ndij

+ yℓ
ij Li e

c
j Hd

(
X (∗)

ΛFN

)nℓij

+ yν
ij LiNj H̃d

(
X (∗)

ΛFN

)nνij

+ yN
ij MNNiNj

(
X (∗)

ΛFN

)nNij

+ h.c.
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Anomay Cancellation
• For U(1)F to be gauged, all six anomaly coefficeints should vanish:

A[SU(3)2c × U(1)F ] =
∑
i

(2qi + ui + di ) = 0,

A[SU(2)2L × U(1)F ] =
∑
i

(3qi + li ) = 0,

A[U(1)2Y × U(1)F ] =
1

6

∑
i

(qi + 4ui + 2di + 3li + 6ei ) = 0,

A[(gravity)2 × U(1)F ] =
∑
i

(6qi + 3ui + 3di + 2li + ei + ni ) = 0,

A[U(1)Y × U(1)2F ] =
∑
i

(q2
i − 2u2

i + d2
i − l2i + e2i ) = 0,

A[U(1)2F ] =
∑
i

(6q3
i + 3u3

i + 3d3
i + 2l3i + e3i + n3i ) = 0

• Charges should also satisfy:
qi + uj + hu ± qX nuij = 0,

qi + dj + hd ± qX ndij = 0,

li + ej + hd ± qX nℓij = 0,

li + nj − hd ± qX nνij = 0,

ni + nj ± qX nNij = 0

• Nontrivial to find solutions to anomaly conditions and desired
fermion mass matrix structures 12



Emergence of Axion
• Among 4 complex scalar fields, a single cross coupling is allowed:

V ⊃ −λHS
HuHdS

n(X (∗))k

Mn+k−2
Pl

+ h.c.

(n, k) are positive integers with values (3,1) preferred.

• Two phases are eaten up by Z and Z ′
F , one phase gets mass from

potential – the pseudoscalar of 2HDM – and the 4th phase remains
massless – axion

• Axion is orthogonal to two Goldstone bosons eaten up by Z and Z ′
F

and the pseudoscalar from the Higgs doublet:

a =
∑

α=u,d,X,S

Kαηα

• ηi are phases of the fields and

Ku = Navuv
2
d (n qX v

2
X ∓ k qSv

2
S ),

Kd = Navdv
2
u (n qX v

2
X ∓ k qSv

2
S ),

KX = NavX
(
qS v2

S (v
2
u + v2

d ) − n (hu + hd )v
2
u v

2
d

)
,

KS = NavS
(
±k(hu + hd )v

2
u v

2
d − qX v

2
X (v

2
u + v2

d )
)

• Global U(1) has a QCD anomaly and solves the strong CP problem.
The gauged U(1)F ensures the quality of the axion.
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Explicit Model 1
• Flavor charges of fermions and scalars:

(q1, q2, q3) = (1, 0,−2), (uc
1 , u

c
2 , u

c
3 ) = (3, 0,−2), (dc

1 , d
c
2 , d

c
3 ) =

(
− 13

3
,
8

3
,
8

3

)
,

(l1, l2, l3) =

(
2

3
,
16

3
,− 5

3

)
, (ec1 , e

c
2 , e

c
3 ) =

(
− 8

3
,− 8

3
,
7

3

)
, (n1, n2, n3) = (4,−6,−1)

hu = 4, hd = − 2

3
, qX = 1, qS = − 13

9

• All anomalies cancel. Fermion mass matrices:

L = qT·

 ε̄8 ε̄5 ε̄3

ε̄7 ε̄4 ε̄2

ε̄5 ε̄2 1

·ucHu+qT·

 ε4 ε̄3 ε̄3

ε5 ε̄2 ε̄2

ε7 1 1

·dcHd+lT·

 ε4 ε4 ε̄
ε̄2 ε̄2 ε̄7

ε5 ε5 1

·ecHd

+ lT·

 ε̄4 ε6 ε
ε̄10 1 ε̄5

ε̄3 ε7 ε2

·NH̃d + NT·

 ε̄8 ε2 ε̄3

ε2 ε12 ε7

ε̄3 ε7 ε2

·NMN + h.c.

• Mass and mixing hierarhcies explained:

λt ∼ 1,
λu

λc
∼ λc

λt
∼ ϵ

4
,

λe

λµ

∼ ϵ
2
,
λµ

λτ

∼ ϵ
2
, |Vus | ∼ ϵ, |Vcb| ∼ ϵ

2
, |Vub| ∼ ϵ

3
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Model 2
• Flavor charges of fermions and scalars:

(q1, q2, q3) = (− 2

3
,
1

3
,− 7

3
), (uc

1 , u
c
2 , u

c
3 ) = (− 22

3
,− 13

3
,− 7

3
), (dc

1 , d
c
2 , d

c
3 ) = (2, 4, 4),

(l1, l2, l3) =

(
− 4

3
,− 7

3
,− 7

3

)
, (ec1 , e

c
2 , e

c
3 ) =

(
8

3
,
20

3
,
26

3

)
, (n1, n2, n3, n4) = (−2,−6,−6, 8)

hu = 0, hd = − 19

3
, qX = 1, qS = − 16

9

• All anomalies cancel. Fermion mass matrices:

LYuk ⊃ QTHu

ε8 ε5 ε3

ε7 ε4 ε2

ε5 ε2 1

 uc + QTHd

ε5 ε3 ε3

ε4 ε2 ε2

ε2 1 1

 dc + LTHd

ε5 ε ε
ε6 ε2 1
ε6 ε2 1

 ec

+ LT H̃d

ε3 ε ε ε13

ε2 ε2 ε2 ε12

ε2 ε2 ε2 ε12

N + MRN


ε4 ε8 ε8 ε6

ε8 ε12 ε12 ε2

ε8 ε12 ε12 ε2

ε6 ε2 ε2 ε16

N.

• Mass and mixing hierarhcies explained:

λt ∼ 1,
λu

λc
∼ λc

λt
∼ ϵ

4
,

λe

λµ

∼ λd

λs
∼ ϵ

3
,
λµ

λτ

∼ λs

λb

∼ ϵ
2
, |Vus | ∼ ϵ, |Vcb| ∼ ϵ

2
, |Vub| ∼ ϵ

3
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Model 3
• Flavor charges of fermions and scalars:

(q1, q2, q3) = (
5

3
,− 1

3
,− 7

3
), (uc

1 , u
c
2 , u

c
3 ) = (

5

3
,− 1

3
,− 7

3
), (dc

1 , d
c
2 , d

c
3 ) =

(
5

3
,
2

3
,
2

3

)
,

(l1, l2, l3) =

(
5

3
,
2

3
,
2

3

)
, (ec1 , e

c
2 , e

c
3 ) = (

5

3
,− 1

3
,− 7

3
), (n1, n2, n3) = (−6,−9,−10)

hu =
14

3
, hd =

14

3
, qX = 1, qS = − 25

9

• All anomalies cancel. Fermion mass matrices:

LYuk ⊃ QTHu

 ε̄8 ε̄6 ε̄4

ε̄6 ε̄4 ε̄2

ε̄4 ε̄2 1

 uc + QTHd

 ε̄8 ε̄7 ε̄7

ε̄6 ε̄5 ε̄5

ε̄4 ε̄3 ε̄3

 dc + LT

 ε̄8 ε̄6 ε̄4

ε̄7 ε̄5 ε̄3

ε̄7 ε̄5 ε̄3

 ec

+ LT H̃d

 ε9 ε12 ε̄7

ε10 ε13 ε̄6

ε10 ε13 ε̄6

N + MR NT

 ε12 ε15 ε̄4

ε15 ε18 ε̄
ε̄4 ε̄ ε̄20

N,

+ lT·

 ε̄4 ε6 ε
ε̄10 1 ε̄5

ε̄3 ε7 ε2

·NH̃d + NT·

 ε̄8 ε2 ε̄3

ε2 ε12 ε7

ε̄3 ε7 ε2

·NMN + h.c.

• Mass and mixing hierarhcies explained:

λt ∼ 1,
λu

λc
∼ λc

λt
∼ ϵ

4
,

λe

λµ

∼ λd

λs
∼ ϵ

3
,
λµ

λτ

∼ λs

λb

∼ ϵ
2
, |Vus | ∼ ϵ, |Vcb| ∼ ϵ

2
, |Vub| ∼ ϵ

3
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Neutrino Sector: Model 1

• One quantitative prediction for neutrino oscillation parameters:

mD ≃

 d 0 b
0 1 0
c 0 a

λvd , MR ≃

 0 M1 M2

M1 0 0
M2 0 M3

 ,

Mν =

 β2 γ′ β
γ′ γ α
β α 1

m̄

• Cofactor of (Mν)22 is zero: Liao, Marfatia, Whisnant (2014)

M(1,1)
ν M(3,3)

ν − (M(1,3)
ν )2 = 0.

• This leads to a consistent prediction. If we choose input as:

m̄ = 0.0307 eV, {α, β, γ, γ′} = {−0.717891,−0.2923, 0.7812, 0.0184}

we obtain:
{m1,m2,m3} = {0.00234, 0.00893, 0.05071}eV,

{sin2 θ12, sin2 θ23, sin2 θ13} = {0.343, 0.407, 0.02235}.

∆m2
sol = m2

2 − m2
1 = 7.42 × 10−5

eV
2
, ∆m2

atm = m2
2 = 2.492 × 10−3

eV
2
.
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Axion Quality in Gauged U(1)F Model

• Axion of the gauged flavor model is of high quality. The lowest
Planck-induced operator that violates PQ symmetry is

V ⊃ S9X 13

M18
Pl

• This leads to extremely tiny shift in θ.

• Since the Froggatt-Nielsen flavor scale is of order fa ∼ 1011 GeV,
one should UV-complee the flavor model and see if axion quality is
preserved with new fields introduced.

• We have UV-completed the model with new scalar doublets which
acquire induced VEVs, suppressed by powers of ϵ.

• Axion quality remains robust under the UV-completion, as shown
next.
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UV-Completion: Charged Fermions

uc3(u
c
2)

Q2(Q3)

Hu

X∗

X∗

H
(2)
u

X∗

X∗

uc2

Q2

Hu

X∗

X∗

H
(0)
u H

(2)
u

X∗ X∗

X∗

uc2(u
c
1)

Q1(Q3)

Hu

X∗

X∗

H
(-1)
u H

(0)
u H

(2)
u

X

X

dc1(e
c
1,2)

Q1(L1)

Hd

X

X

H
( 10

3 )
d H

( 4
3 )

d

dc2,3(e
c
1,2)

Q2(L2)

Hd

X∗

X∗

H
(- 83 )
d
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UV-Completion: Neutrino Sector

H̃d

L1

N3

X

N (0) N (0)

XH̃d

L3

N3

X

N (1) N (-1) N (0) N (0)

X∗

X∗

H̃d

L3

N1

X∗

N (1) N (-1) N (2) N (-2) N (3) N (-3)

X∗

X∗

X∗H̃d

L1

N1

X∗

N (0) N (0) N (1) N (-1) N (2) N (-2) N (3) N (-3)

X

N1

N2

X

N (-5) N (5)

X

N3

N3

X

N (0) N (0)

X∗X∗

N1

N3

X∗

N (-3) N (3) N (-2) N (2)
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Loop Corrections to θ

X∗

X∗

X∗

X∗

X∗

X∗

X∗

X∗

X∗

X∗

X∗

S∗

S∗ S∗

S∗

S∗

S∗
X∗

S∗

S∗

S∗
X∗

Hu

H
(2)
u

H
(0)
u

H
(-1)
u

Hd Hu

H
(2)
u

H
(0)
u

H
(- 83 )

d

Hd

• Loop diagrams may induce additional shifts in θ with lower powers
of MPl suppression

V ind
��PQ ⊃

(
ln ΛFN/MAH

16π2

)2
S9X 2

M7
Pl

(
X

ΛFN

)11

+ h.c .

• These diagrams do not upset the strong CP solution
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Loop Corrections to θ

X

X

S
S X

X

X

X

X

X

X X

X

X

X

N2 N2

N1

N3N3

N1

(S)
9

• Tilt in axion potential:

V ind
��PQ ⊃ 1

16π2

S9

M9
Pl

X 13

Λ7
FNM

2
N

+ h.c.

• Consistent with axion quality
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Axion Quality and Dark Matter

• All QCD axion models lead to degenerate vacuua owing to a ZN

symmetry that is respected by the QCD anomaly. This results in
topological structures called domain walls, which are potentially
dangerous cosmologically

• When domain wall number NDW = 1, the wall is not cosmologically
stable and thus harmless Sikivie (1982)

• When axion is a mixed combination of fields in presence of a gauge
symmetry, NDW needs careful consideration:

NDW = minimum integer

{
1

fa

∑
i

ni ci vi , ni ∈ Z
}
, a =

∑
i

ciai

Ernst, Ringwald, Tamarit (2018)

• In the present model, there are 3 flavors, but NDW = 1 nonetheless.
The domain wall is another source of axion production in early
universe. Range of fa for the right axion dark matter abundance is
Kawaskai, Saikawa, Sekiguchi (2015)

fa = (4.6 − 7.2) × 1010 GeV
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Successful Models with High Quality Axion

n k qS High Quality Axion DM

3 1+ −31/9 ✔ ✔

3 1− −25/9 ✔ ✔

n k qS High Quality Axion DM

3 1+ 16/9 ✔ ✔

1 1−, 2−, 3− 22/3, 25/3, 28/3 ✔ ✘,✘,✘

2 2− 25/6 ✔ ✔

3 1− 22/9 ✔ ✔

n k qS High Quality Axion DM

3 1+ −31/9 ✔ ✔

3 1− −25/9 ✔ ✔
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Axion as a Flavon

• Since axion arises from a family symmetry it has tree-level flavor
violating couplings to fermions

• An important parameter is

r =
⟨S⟩
⟨x⟩

=
vS
vX

For r ≥ 1 is primarily a flavon leading to FCNC

• Most stringent constraint from K+ → π+ + a decay:

fa ≳ (4.1, 5.0)× 107GeV
qS r

2
√
|κ(d,s)b(ϵ)|

n (q2X + q2S r
2)

Flavaxion models (global): Calibbi, Goertz, Redigolo, Ziegler, Zupan (2016);
Ema, Hamaguchi, Moroi, Nakayama (2016)
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Baryogenesis via Leptogenesis

• CP asymmetry in decays of N fields can be estimated. In Model 1
resonant leptogeneis arises:

MN =

 0 M1ϵ
2 M2ϵ

3

M1ϵ
2 0 0

M2ϵ
3 0 M3ϵ

2


• CP asymmetry in Ni → L+ Hd decays:

ϵ1 =
Im(Ŷ †

ν Ŷν)
2
21

(Ŷ †
ν Ŷν)11(Ŷ

†
ν Ŷν)22

(M̂2
2 − M̂2

1 )M̂1Γ2

(M̂2
2 − M̂2

1 )
2 + M̂2

1Γ
2
2

, ϵ2 = ϵ1(1 ↔ 2)

ϵ1 ≃ −128π

λ2
Im(a∗c) ϵ8

M3
2M3

(M2
1 −M2

3 )
2

• ϵ8 suppression leads to right order of baryon asymmetry
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Axion Couplings to Fermions

27



Axion coupling to electron and Photon
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High Quality Hybrid Axion in SO(10)× U(1)

• Unified SO(10)×U(1) where U(1) is a gauge symmetry, can lead to
high quality axion

• The attractive features of SO(10) GUT are preserved, including
coupling unification and predictive fermion spectrum

• The fermion content and transformation under SO(10)× U(1):

{3× 161 + 1× 10−6 + 1× 112}+ {2× 1−4 + 1× 18}

• All gauge anomalies cancel.

A[SO(10)2 × U(1)a] = 3 × 2 × 1 + 1 × 1 × (−6) = 0

A[(gravity)2 × U(1)a] = 3 × 16 × 1 + 1 × 10 × (−6) + 1 × 1 × 12 + 2 × 1 × (−4)

+ 1 × 1 × 8 = 0

A[(U(1)a)
3] = 3 × 16 × (1)3 + 1 × 10 × (−6)3 + 1 × 1 × (12)3 + 2 × 1 × (−4)3

+ 1 × 1 × (8)3 = 0

• This is the simplest U(1) model that can be gauged with SO(10).
(Some resemblenece with E6.)

• Such a model automatically has an axion which is of high quality.
29



Hybrid SO(10)× U(1) Axion

• Higgs sector contains the usual SO(10) fields and two singlets:

{10H(−2) + 126H(−2) + 45H(0) + 10′H(0) + T (1+1) + S(112)}

• New features are the two singlet scalars T ,S and a real 10′H . The
10′H is needed to avoid weak scale axion: V ⊃ HH ′T 2.

Fermion SO(10) gauge U(1)a global U(1)
irrep charge charge

ψa 16a +1 +1
F 10 −6 0
χ 1 +12 0

N1,2,3 1 (−4,−4,+8) (0, 0,+2)

Scalar SO(10) rep U(1)a charge global U(1)
H 10 −2 −2
H′ 10 0 0

∆ 126 −2 −2
T 1 +1 +1
S 1 +12 0
A 45/210 0 0
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High Quality SO(10) Axion

• Yukawa couplings:

LYuk = Y1016 16 10H + Y12616 16 126H + y1010−610−6S12

+ y ′
1010−618 10H + 112112

(S∗)2

MPl
+ ....h.c .

• Realistic fermion masses are induced, including exotics

• Model has two decoupled sectors, one with 16-fermions, and one
with 10-fermion. This results in accidental PQ symmetry

• Leading correction to PQ symmetry from gravity is

V ⊃
T 12S∗

M9
Pl• Resulting shift in θ is

∆θ ≃ κ sin δ

(12)! 211/2
fa v

12
T

M9
Pl m

2
π f 2π

(mu + md )
2

mu md

(
1 +

144 v2S
v2
T

)
√

1 +
144 v2

S
v2

X

• This is highly suppressed. fa < 7× 1011 GeV (1.5× 1011 GeV) is
required for quality, consistent with dark matter density of axion.
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Orange points satisfy axion quality. Shaded band corresponds to the
correct relic abundance of axion dark matter. Uses domain wall number
NDW = 1 in the model.
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SO(10) Axion Phenomenology
• Axion field is orthogonal to pseudoscalars and Goldstones

a ≃ 1/

√
1 +

144v2
Sv

2

X

(
ηS − 12vT vSv

2
ηT/X

)
+ ...

fa = vS/

√
1 +

144v2
Sv

2

X

X = v2
T v2 + 4 ṽ2(V 2

u + V 2
d ) + 16V 2

u V
2
d

• Axion couplings to fermions and gauge bosons are defined as

Lint
a ⊃ αs

8π

a

fa
G a
µν G̃

a,µν +
α

8π

Caγ

fa
Fµν F̃

µν + Caf
∂µa

2fa
(f γµ

γ5f ) .

where f = e, p, n.

• The coupling coefficients are:

Caγ =
E

N
− 1.92

Cap = −0.47 + 0.88 c0u − 0.39 c0d − Ca,sea

Can = −0.02 + 0.88 c0d − 0.39 c0u − Ca,sea

Ca,sea = 0.038 c0s + 0.012 c0c + 0.009 c0b + 0.0035 c0t

Cae = c0e +
3α2

4π2

[
E

N
log

(
fa

me

)
− 1.92 log

(
GeV

me

)]
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SO(10) Axion Phenomenology – cont.

• In the SO(10) model the coefficients are

Cae =
24r

1 + 144r
Ke +

3α2

4π2

[
E

N
log

(
fa

me

)
− 1.92 log

(
GeV

me

)]
Cap = −0.47 +

r

1 + 144r
(20.75Ku − 10.49Ke)

Can = −0.02 +
r

1 + 144r
(19.99Ke − 9.73Ku)

Here we have defined

Ku =
2Vd

2 + ṽ2

v2
, Ke =

2Vu
2 + ṽ2

v2

• Ke has a range (1.5− 2) corresponding to ṽ = Vu and ṽ ≪ Vu. The
value of Ku can be much smaller, with an upper limit of 0.5
(corresponding to ṽ = vu). This gives a range Cae = (0.25− 0.33)
for r ≡ v2

S/v
2
T = (0.1− 1).

• As r → 0 model approaches KSVZ axion. For r ≫ 1, it is similar to
DFSZ axion. In fact, the model is a hybrid version that interpolates
between KSVZ and DFSZ models.
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Hybrid Nature of Axion

Model interpolates between KSVZ and DFSZ-I models.
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Axion couplings in SO(10) model

gaf =
mf

fa
Caf , gag =

αs

2πfa
, gaγ =

αCaγ

2πfa
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Proton-axion coupling
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Neutron-axion couplings
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Conclusions

• Several classes of models presented which have an accidental PQ
symmetry

• NDW = 1 in these models for domain wall number, causing no
cosmological issues

• Flavor gauge symmetry framework can address many of open
questions

• Axion couplings to fermions can potentially distinguish these models
from standard benchmarks
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