Looking through loops: CMB birefringence from axion strings

Andrew J. Long Rice University @ UW Madison June 6, 2025

[2103.10962, 2208.08391, 2306.07351, 2411.05002]

Mudit Jain (Rice U postdoc)

Ray Hagimoto (Rice U grad)

+ Mustafa Amin (Rice U faculty)

- If a hyper-light axion-like particle exists in Nature, the associated cosmological network of axion strings can leave an imprint on CMB polarization through birefringence
- We use existing measurements of anisotropic birefringence (Planck, SPT, ...) to place constraints on this scenario. Next-generation telescopes (CMB-S4) will probe O(1) electromagnetic anomaly coefficients and thereby probe the axion's UV embedding
- We find that it is difficult (but not impossible!) to reconcile the detection of isotropic birefringence with strong limits on anisotropic birefringence coming from axion strings
- We argue that measurements of anisotropic birefringence could not only reveal the presence of a hyper-light ALP in Nature, but also lead to a measurement of its mass
- Machine learning methods (spherical CNN) may prove useful to help to detect the subtle non-Gaussian signal of axion strings in next-generation CMB polarization data

axion-like particles & cosmic axion strings

Theory landscape: axion-like particles

axion-like particles

$$\mathcal{L} \supset \frac{1}{2} (\partial a)^2 - \frac{1}{2} m_a^2 a^2 - \frac{1}{4} g_{a\gamma\gamma} a F_{\mu\nu} \tilde{F}^{\mu\nu}$$

ALPs from extra dimensions (such as string theory)

CMB birefringence from axion strings

Theory landscape: axion-like particles

axion-like particles

$$\mathcal{L} \supset \frac{1}{2} (\partial a)^2 - \frac{1}{2} m_a^2 a^2 - \frac{1}{4} g_{a\gamma\gamma} a F_{\mu\nu} \tilde{F}^{\mu\nu}$$

hyper-light axion-like particles (testable with cosmology)

ultra-light axion-like particles (dark mater candidate) heavy axion-like particles (testable in the lab)

ALPs can form axion strings

[Kibble (1976)] [Vilenkin & Vachaspati (1987)]

string thickness = microscopic

string length = cosmological

image credit: Mudit Jain (2021)

assume: $T_{\text{RH}} > f_a$

CMB birefringence from axion strings

A cosmic string network

string network simulation:

simulations show:

- long strings intersect and reconnect
- reconnections form loops
- loops emit axions and collapse

so, the network evolves into the scaling regime:

- typical string length tracks Hubble
- average energy density tracks Hubble

so, in the universe today we expect:

- order 10 strings per Hubble volume
- string loops with length ~ Hubble scale

How can we detect axion strings in the Universe today?

CMB birefringence from axion strings

6/28

birefringence from axion strings

How could we detect an axion string?

[Harvey & Naculich (1989)], [Carroll, Field, Jackiw (1990,91)], [Harari, Sikivie (1992)] [Fedderke, Graham, Rajendran (2019)], [Agrawal, Hook, Huang (2019)] [Yin, Dai, Ferraro (2021) & (2023)]

* birefringence can be measured through E-B cross correlation

CMB birefringence from axion strings

Modeling anisotropic birefringence from strings

9/28

The loop-crossing model

- Circular & planar loops
- Randomize loop orientation
- Randomize loop location in space
- All loops same radius at any time
- Loop radius evolves tracking Hubble

 $R(t) = \frac{\zeta_0}{H(t)}$

• Number of loops tracks Hubble $\rho(t) = \xi_0 \mu(t) H(t)^2$

Model Parameters

$$\{m_a, \mathcal{A}, \zeta_0, \xi_0\}$$

early time -> small loops late time -> large loops

Andrew Long (Rice University)

[Jain, AL, Amin (2021)]

Expected birefringence signal

[Jain, AL, Amin, arXiv:2103:10962] [Jain, Hagimoto, AL, Amin, arXiv:2208.08391]

degeneracy: $<\alpha\alpha> ~ A^2 \xi_0$

* need $m_a \lesssim 3H_{\rm cmb} \approx 10^{-28} \, {\rm eV}$ for the network to survive until after recombination

CMB birefringence from axion strings

Effect on CMB polarization

How does birefringence affect the CMB's temperature and polarization? $T(\hat{\boldsymbol{n}}) \to T(\hat{\boldsymbol{n}})$ $[Q \pm iU](\hat{\boldsymbol{n}}) \to [(Q \pm iU)e^{\pm 2i\Delta\Phi}](\hat{\boldsymbol{n}})$

CMB birefringence from axion strings

Constraints from anisotropic birefringence

[Jain, AL, Amin, arXiv:2103:10962] [Jain, Hagimoto, AL, Amin, arXiv:2208.08391] see also: Yin, Dai, & Ferraro (2111.12741)

CONSTRAINTS: SPTPOL: $\mathcal{A}^2 \xi_0 < 3.7$ at 95% CL

CMB birefringence from axion strings

12/28

CMB observations constrain: SPTPOL: $A^2 \xi_0 < 3.7$ at 95% CL

... already probing an O(1) anomaly coefficient! ... but still large uncertainties in ξ_0 (from sims)

Pogosian et. al. (2019)

future telescopes probes of isotropic + aniso. birefringence

Current			LiteBIRD			SO			CMB-S4-like			PICO		
α	A_{α}	$\sqrt{\frac{C_2^{\alpha}}{4\pi}}$	α	A_{α}	$\sqrt{\frac{C_2^{\alpha}}{4\pi}}$	α	A_{α}	$\sqrt{\frac{C_2^{lpha}}{4\pi}}$	α	A_{α}	$\sqrt{\frac{C_2^{lpha}}{4\pi}}$	α	A_{α}	$\sqrt{\frac{C_2^{\alpha}}{4\pi}}$
'	10 ² deg ²	,	ľ.	10^{-6}deg^2	,	, í	10 *deg*	,	,	10 °deg ²	,	,	10 °deg ²	,
-	-	-	1.3	2.7	0.9	0.56	3	0.29	0.1	1.4	0.065	0.05	0.4	0.035
-	-	-	1.5	3.3	1.0	0.66	4	0.35	0.11	2.0	0.08	0.06	0.5	0.04
-	-	-	1.4	3.5	1.0	0.64	5.0	0.4	0.13	2.5	0.09	0.08	1.2	0.06
30	2	3	1.6	4.0	1.1	0.71	5.5	0.4	0.15	3.3	0.1	0.09	1.4	0.065

BLE II. Current and forecasted 68% CL bounds on the uniform and the anisotropic CPR parameters.

$$A_{\alpha} = L(L+1)C_L^{\alpha}/2\pi$$

diagonal = allows multipoles to vary independently horizontal = restricts to a scale invariant spectrum

CMB birefringence from axion strings

what about isotropic birefringence

Are strings responsible for isotropic birefringence?

[Jain, Hagimoto, AL, Amin, arXiv:2208.08391]

reported detection of isotropic birefringence: same rotation angle across the whole sky (using *Planck* & *WMAP* data)

$$\alpha_{00} = -1.21^{\circ +0.33^{\circ}}_{-0.32^{\circ}} (68\% \text{ CL})$$

[Minami & Komatsu (2020)] [Diego-Palazuelos et. al. (2022)] [Eskilt (2022)], [Eskilt & Komatsu (2022)] [Eskilt et. al. (2023)] our conclusion: the isotropic signal is in tension with limits on anisotropic BF if they both arise from axion-string induced birefringence

Andrew Long (Rice University)

note that:
$$\beta = -\alpha_{00}/\sqrt{4\pi} \approx 0.34^{\circ}$$

CMB birefringence from axion strings

Are strings responsible for isotropic birefringence?

[Ferreira, Gasparotto, Hiramatsu, Obata, & Pujolas (2023)]

reported detection of isotropic birefringence: same rotation angle across the whole sky (using *Planck* & WMAP data)

$$\alpha_{00} = -1.21^{\circ}_{-0.32^{\circ}}^{+0.33^{\circ}} (68\% \text{ CL})$$

[Minami & Komatsu (2020)] [Diego-Palazuelos et. al. (2022)] [Eskilt (2022)], [Eskilt & Komatsu (2022)] [Eskilt et. al. (2023)]

loopholes allowing large iso-BF

(1) environmental effects a nearby loop in our Hubble volume would dominate the isotropic signal

(2) Hubble-scale gradients the massless axion field is expected to be inhomogeneous on the Hubble scale

(3) late-forming network if the string network is not present just after recombination, the small-scale BF is suppressed

note that: $\beta = -\alpha_{00}/\sqrt{4\pi} \approx 0.34^{\circ}$

effect of varying ALP mass

Collapse of the string-wall network

[Jain, Hagimoto, AL, Amin, arXiv:2208.08391]

Axion strings become connected together by domain walls

... the string-wall network collapses (for $N_{dw} = 1$)

let's consider:

 $: \qquad \begin{cases} m_a \lesssim 3H_{\rm CMB} \simeq 3 \times 10^{-29} \text{ eV} & \text{(string network survives until after recombination)} \\ m_a \gtrsim 3H_0 \simeq 5 \times 10^{-33} \text{ eV} & \text{(string network collapses before today)} \end{cases}$

after the network collapses at redshift z_c the accumulation of birefringence is shut off

CMB birefringence from axion strings

19/28

Impact on birefringence

(assuming $N_{\rm DW} = 1$)

raise the ALP mass (network collapses earlier)

$$m_a = 2 \times 10^{-29} \text{ eV} \quad (z_c = 404)$$

 $\begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{array} \right) \begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{array} \right) \begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{array} \right) \begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{array} \right) \begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{array} \right) \begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{array} \right) \begin{array}{c} & & & \\ &$

strong scale dependence \rightarrow possible to measure m_a

CMB birefringence from axion strings

20/28

Andrew Long (Rice University)

[Jain, Hagimoto, AL, Amin, arXiv:2208.08391]

see also: [Ferreira, Gasparotto, Hiramatsu, Obata, & Pujolas (2023)]

Implications

 $(assuming N_{DW} = 1)$

raise the ALP mass (network collapses earlier)

strong scale dependence \rightarrow possible to measure m_a

CMB birefringence from axion strings

21/28

Andrew Long (Rice University)

[Jain, Hagimoto, AL, Amin, arXiv:2208.08391] projections: [Pogosian et. al. (2019)] signatures of non-Gaussianity

axion-string induced birefringence: loop-like features are visibly non-Gaussian

How to best quantify the non-Gaussian birefringence and develop tests to extract these features from the data?

CMB birefringence from axion strings

Probing non-Gaussianity with scattering transform

[Yin, Dai, Ferraro (2023)]

Birefringence non-Gaussianity

[Hagimoto & AL, arXiv:2306:07351]

scales (b/c of central

limit theorem)

NG information

breaks the A² ξ_0

degeneracy

a measurement of

non-G will help to tell

apart axion strings &

other sources of

birefringence

Andrew Long (Rice University)

CMB bi

Machine learning for axion strings

train 3 SCNN's to identify 3 LCM parameters

package: DeepSphere (Python)
architecture: 3 conv+pool layers

CMB birefringence from axion strings

summary & conclusion

- If a hyper-light axion-like particle exists in Nature, the associated cosmological network of axion strings can leave an imprint on CMB polarization through birefringence
- We use existing measurements of anisotropic birefringence (Planck, SPT, ...) to place constraints on this scenario. Next-generation telescopes (CMB-S4) will probe O(1) electromagnetic anomaly coefficients and thereby probe the axion's UV embedding
- We find that it is difficult (but not impossible!) to reconcile the detection of isotropic birefringence with strong limits on anisotropic birefringence coming from axion strings
- We argue that measurements of anisotropic birefringence could not only reveal the presence of a hyper-light ALP in Nature, but also lead to a measurement of its mass
- Machine learning methods (spherical CNN) may prove useful to help to detect the subtle non-Gaussian signal of axion strings in next-generation CMB polarization data

backup slides

Analytical understanding

[Jain, AL, Amin, arXiv:2103:10962]

Analytical understanding

[Jain, AL, Amin, arXiv:2103:10962]

vary the loop radius:
$$R(t) = \zeta_0 / H(t)$$

CMB birefringence from axion strings

Machine learning for axion strings

How well does the SCNN reproduce a known input?

SCNN's for Z & A work well

SCNN for X struggles

CMB birefringence from axion strings

Machine learning for axion strings

Complementary studies: stable axion domain walls

domain walls without strings expected if $H_{inf} \sim f_a$

possible to evade DW problem imposes bound on mass & decay constant

$$\sigma_{
m DW} \simeq 8 f_{\phi}^2 m_{\phi} \lesssim (1 \ {
m MeV})^3,$$

 $f_{\phi} \lesssim 4 \times 10^9 \ {
m GeV} \sqrt{rac{10^{-20} \ {
m eV}}{m_{\phi}}}.$

birefringence signal independent of propagation

 $\Delta \Phi = 0$ if LS γ is from the vacuum R $\Delta \Phi = c_{\gamma} \alpha$ if LS γ is from the vacuum L.

possible to accommodate detection of isotropic BF and evade limits on anisotropic BF (no random-walk enhancement)

CMB birefringence from axion strings

34

[Takahashi & Yin (2020)]

[Nakagawa, Takahashi, & Yamada (2021)]

[Kitajima, Kozai, Takahashi, & Yin (2022)] [Gonzalez, Kitajima, Takahashi, & Yin (2022)]

Theory landscape: axion-like particles

$$\mathcal{L} \supset \frac{1}{2} (\partial a)^2 - \frac{1}{2} m_a^2 a^2 - \frac{1}{4} g_{a\gamma\gamma} a F_{\mu\nu} \tilde{F}^{\mu\nu}$$

CMB birefringence from axion strings

Axion-string induced birefringence signal

Key features

- Power spectrum is almost scale invar.
- Characteristic scale (I @ the peak) set by loop size at LSS
- Smaller loops (ζ₀) => weaker signal
- Trivial dependence on loop density (ξ_0) and anomaly coefficient (A) ... power scales with $\xi_0 A^2$

Testability

- Current telescopes (SPT/ACT) are already sensitive enough to test large loops (ζ₀=1)
- Future suveys will be very powerful

CMB probes of axion strings: constraints

[Yin, Dai, Ferraro (2111.12741)]

CMB birefringence from ultra-light axion string networks