Joshua Berger Colorado State University

Dark Matter Stories @ ν Experiments

PHENOMENOLOGY AT FRONTIERS

The "Usual" Story: WIMPs

LZ: PRL 131, 041002 (2023)

Abridged List of Assumptions:

- Halo DM (flux and speed)
- Elastic Scattering
- GeV to 10 TeV mass
- Small Cross Section
- No Long Range Forces

The Expanded WIMP Story

Overburden: Space/Surface

Light DM

Electron scattering Light Elements Condensed Matter/ Semi-conductors

Bramante et. al., PRD 98, 083516 (2018)

Macroscopic DM

No DM in detectors Multiple interactions

Neutrino Fog Eventually: Directional Detection

Another View: Flux vs. Energy

Another View: Flux vs. Energy

*Assuming heavy DM, short-range scattering

Higher Energies Means ν Detectors

DUNE FD

 $M_{\rm fid} = 40 \text{ kton}$ $E_{\rm thresh} \sim 10 - 100 \text{ MeV}$

JUNO

 $M_{\rm fid} = 20 \, {
m kton}$ $E_{\rm thresh} \sim 1 \, {
m MeV}$

JOSHUA BERGER

DeepCore/IceCube

 $M_{\rm fid} \sim 30 \,\,{
m Mton} - 1 \,\,{
m Gton}$ $E_{\rm thresh} \sim 10 - 100 \,\,{
m GeV}$

Super-K/Hyper-K

 $M_{\rm fid} = 22.5 \text{ kton} - 560 \text{ kton}$ $E_{\rm thresh} \sim 1 - 500 \text{ MeV}$

Boosted Dark Matter

Baseline Halo DM: $v \sim 10^{-3} \implies E_{\text{recoil}} \leq 200 \text{ keV}$

Can we get a flux of sped up dark matter to increase the energy deposited?

- Dark matter annihilation into other dark matter
- Cosmic ray acceleration

Bringmann, Pospelov: PRL 122 (2019) 171801 Dent, Dutta, Newstead, Shoemaker: PRD 101 (2020) 11, 116007

Dark matter rain

Acevedo, JB, Denton: JHEP 11 (2024) 011

Agashe et. al.:, JCAP10 (2014) 062 JB, Cui, Zhao: JCAP02 (2015) 005 Kong, Mohlabeng, Park: PLB 743 (2015) 256-266

Solar Captured BDM

Analogy: indirect detection of neutrinos from the Sun Some features of this model:

- Light DM χ emerges from the Sun with a boost $\gamma = m_{\psi}/m_{\chi}$

Mass ≥ 4 GeV allows for negligible evaporation

• Heavy dark matter ψ constrained by direct detection, so look at spin-dependent, scalar DM

• As long as cross sections are big enough, flux determined entirely by capture cross section

 $\Phi \approx \frac{C}{4\pi (1 \text{ AU})^2}$

Solar BDM: Projected Sensitivity

Limitations: not a full-fledged detector simulation, doesn't include resonant BDM scattering

JB et. al.: PRD 103 (2021) 9, 095012

Some Limitations of Solar BDM

- DM needs to be scalar, axially coupled to evade direct detection of heavy component
- Direct detection can/will catch up with improved spin-dependent searches
- Mass must be larger than 4 GeV
- Need more ingredients to get observed relic abundance

Is there another way?

Dark Matter Rain

Introduce a new long-range force (longer than Earth radius) between dark matter and nuclei

 $\Phi = -$

Nucleus force constrained by fifth force searches: $g_n \leq 8 \times 10^{-25}$ Dark matter force constrained less, dominantly from the bullet cluster: $g_{\gamma} \lesssim 4 \times 10^{-6} (m_{\gamma}/\text{MeV})^{3/4}$ Acceleration of dark matter toward the Earth means it moves nearly vertically at high γ Subject to conservation of angular momentum and total energy... or is it?

$$\frac{g_{\chi}g_nN_{\oplus}}{r}e^{-m_{\phi}r}$$

MICROSCOPE, PRL 129 (2022) 121102 Davoudiasl, PRD 96 (2017) 095019

How Big a Boost?

Non-relativistic: Scalar & vector don't differ **Relativistic:**

Scalar & vector differ

Additional Considerations

Larmor radiation rate:
$$\frac{dp_{\rm rad}^{\mu}}{d\tau} = -Qa^{\lambda}a_{\lambda}U^{\mu}$$
, where $Q = \frac{g_{\chi}^2}{12\pi}$, $\frac{g_{\chi}^2}{6\pi}$ for scalar, vector
 $\Delta E_{\rm rad} \approx Q \frac{m_{\chi}}{g_{\chi}g_n N_{\oplus}} \left\{ \frac{\gamma^3}{3}, \frac{\gamma^5}{5} \right\}$

 \implies Relevant at very high boosts, $\gamma \gtrsim 10^{10}$

Centrifugal barrier: if we limit to $R_{\oplus} \lesssim m_{\phi}^{-1} \lesssim 1$ AU not very relevant

Flux enhancement: extra pull enhances maximum impact parameter by ~ $\{1, \gamma^2\}/v_{halo}^2$

12

Dark Matter Rain Results

Acevedo, JB, Denton: JHEP 11 (2024) 011

Resonant Scattering

Dominant baryonic resonance is Δ : need to increase isospin by 1 If we see evidence of baryonic resonance, strong hint for isospin-violating BDM Implementation of resonant scattering in GENIE is ready to go

• Based on Rein-Sehgal model, which is based on 1971 model by Feynman, Kislinger, Ravndal

- JB: 1812.05616 JB, Orr: 2506.xxxx

Resonant Scattering's Effect

See also Zink, Ramirez-Quezada: 2502.17573

Mesogenesis and Dark Matter

JOSHUA BERGER

Elor, Escudero, Nelson: PRD 99, 035031 (2019)

Induced Nucleon Decay

- Meson emerges with energy around GeV
- Differs from spontaneous p decay in kinematics \implies Existing Super-K searches cut away events
- Can reverse, $\xi \to \phi_R$, for different kinematics
- Up to nucleon motion, mono energetic signal

$$E_{\phi_B N \to \xi \mathcal{M}}^{\mathcal{M}} = \frac{m_{\mathcal{M}}^2 + (m_N + m_{\phi_B})^2 - m_{\xi}^2}{2(m_N + m_{\phi_B})}$$

Mesogenesis Results

- Think about bounds on dim-6 coupling C_{ud_i,d_i} relative to max allowed by collider searches for Φ
- DUNE, JUNO, Hyper-Kamiokande: complementary bound of order $10^{-3} 10^{-2}$

Macroscopic Dark Matter

Can we extend the upper end of DM searches beyond the μg mass scale?

Can consider elastic scattering and look for multi-scatter events at direct detection experiments

But there is room for some interesting inelastic signals

Electroweak symmetric balls:

Non-topological solitons in which Higgs VEV goes to O

Nuclei lose a bit of their mass inside the soliton

Creates a potential into which the nuclei can fall

19

Signals of Nucleus Capture

- Radiative capture emits a photon
- Falling to ground state emits many more photons

Bai, JB: JHEP 05 (2020) 160

DeepCore Signal

- Repurpose the IceCube Slow Particle Trigger used for monopole searches $M_{
m X}\,({
m g})$

Bai, JB, Korwar: JHEP 11 (2022) 079

Toward More Realism?

- At $R_{\rm EWSB} \sim 10^{6}~{
 m GeV^{-1}}$ and $\Delta m \sim 100~{
 m MeV}$: $\sim 10^{12}$ bound states
- Dominated by small steps in *n*, ℓ toward the ground state $\mathscr{M} \propto \int e^{i\mathbf{q}\cdot x} \boldsymbol{\epsilon}^* \cdot [\nabla \psi_f^*(\mathbf{x}) \nabla \psi_i(\mathbf{x}) - \psi_f^*(\mathbf{x}) \nabla \psi_i(\mathbf{x})] d^3x$
- Dipole approximation $e^{i\mathbf{q}\cdot\mathbf{x}} \approx 1$ reasonable when $|\mathbf{q}| \ll R_{\mathrm{EWSB}}^{-1}$
- Most transitions: this doesn't work, but also rapidly oscillating $e^{i\mathbf{q}\cdot\mathbf{x}}$ makes integral small
- Can we get away with dipole approximation + analytic integral over small number of FS?
- Answer seems to be yes, but can we now simulate in a reasonable amount of time?

22

Outlook

- Direct detection works best in a particular region of parameter space, when framed in terms of recoil ${\cal E}$
- At large recoil energies: We need to think about ν experiments
- At low recoil energies: Condensed matter devices Wavelike DM (not shown)
- Keep an open mind beyond the WIMP direct detection plot as to how we may see DM!

10^{8} Low gap 10^{6} 10^{4} yr^{-1} SENSE Flux Sensitivity (m $^{-2}$ 10^{2} LZ 10^{0} 10^{-2} DUNE 10^{-4} 10^{-6} IceCube Xe scat.* $\gamma = 10^*$ e^{-} scat.* m_p 10^{-} 10^{-10} 10^{-12} 10^{-8} 10^{-6} 10^{-4} 10^{-2} 10^{0} 10^{2} 10^{4} Recoil Energy Sensitivity (GeV)

