
Traineeships in Advanced Computing
for High Energy Physics (TAC-HEP)

Varun Sharma

University of Wisconsin – Madison, USA

FPGA module training

Week-10

Lecture-19: 10/04/2025

TA
C

-H
E
P

 2
0

2
5

Content

April 10, 2025TAC-HEP: FPGA training module - Varun Sharma

So far
• HLS Pragmas:

• Interface

• Array Partition

• Array reshape

• Pipeline
• Dataflow

• Latency

• Allocation

• Stable

• Inline
• Unroll

Today
• Unsupported C/C++

constructs
• Matrix Multiplication

• Examples for HLS Pragmas:
• Unroll

2

TA
C

-H
E
P

 2
0

2
5

Different IPs on VU13P

April 10, 2025TAC-HEP: FPGA training module - Varun Sharma 3

TA
C

-H
E
P
 2

0
2

5

Unsupported C/C++ Constructs

April 10, 2025TAC-HEP: FPGA training module - Varun Sharma 4

TA
C

-H
E
P

 2
0

2
5

C/C++ constructs

HLS compilers support many C/C++ constructs, but some are not synthesizable.

• Coding changes may be required for successful synthesis and implementation.

For a function to be synthesized:

• It must fully contain the design's functionality

• No system calls to the operating system are allowed

• All C/C++ constructs must have fixed or bounded sizes

• The constructs' implementation must be unambiguous

April 10, 2025TAC-HEP: FPGA training module - Varun Sharma 5

TA
C

-H
E
P

 2
0

2
5

System Calls

April 10, 2025TAC-HEP: FPGA training module - Varun Sharma 6

System calls are not synthesizable because they interact with the operating system, which
is not present in the hardware environment where the synthesized design runs

void hier_func4(din_t A, din_t B, dout_t *C, dout_t *D)
{
 dint_t apb, amb;
 sumsub_func(&A,&B,&apb,&amb);

#ifndef __SYNTHESIS__
 FILE *fp1; // The following code is ignored for synthesis
 char filename[255];
 sprintf(filename,Out_apb_%03d.dat,apb);
 fp1=fopen(filename,w);
 fprintf(fp1, %d \n, apb);
 fclose(fp1);
#endif
 shift_func(&apb,&amb,C,D);

}

Vitis HLS ignores certain system calls like printf() and

fprintf(stdout,) if they only display data and don’t

affect algorithm execution.

Most system calls (e.g., getc(), time(), sleep()) are
not synthesizable and should be removed before

synthesis

Vitis HLS defines the __SYNTHESIS__ macro during

synthesis.
• This macro can be used to conditionally exclude

non-synthesizable code from the design

TA
C

-H
E
P

 2
0

2
5

Dynamic Memory Usage

April 10, 2025TAC-HEP: FPGA training module - Varun Sharma 7

• Memory allocation system calls like malloc(), alloc(), and free() rely on OS-

managed resources and runtime behavior
• Such calls cannot be synthesized and must be removed from the design

code
• A hardware design must be fully self-contained, with all required resources

explicitly defined

• Dynamic memory operations must be replaced with equivalent fixed or
bounded representations for synthesis

Because the coding changes impact the functionality of the

design, AMD does not recommend using the __SYNTHESIS__ macro.

TA
C

-H
E
P

 2
0

2
5

Example

April 10, 2025TAC-HEP: FPGA training module - Varun Sharma 8

#include "malloc_removed.h"

#include <stdlib.h>

//#define NO_SYNTH

dout_t malloc_removed(din_t din[N], dsel_t

width)

{

#ifdef NO_SYNTH

 long long *out_accum = malloc

(sizeof(long long));

 int* array_local = malloc (64 *

sizeof(int));

#else

 long long _out_accum;

 long long *out_accum = &_out_accum;

 int _array_local[64];

 int* array_local = &_array_local[0];

#endif

int i,j;

LOOP_SHIFT:for (i=0;i<N-1; i++){

if (i<width)

 *(array_local+i)=din[i];

else

 *(array_local[i])=din[i]>>2;

}

*out_accum=0;

LOOP_ACCUM:for (j=0;j<N-1; j++) {

 *out_accum += *(array_local+j);

}

return *out_accum;

}

TA
C

-H
E
P

 2
0

2
5

Dynamic Memory Usage

April 10, 2025TAC-HEP: FPGA training module - Varun Sharma 9

1. Add the user-defined macro NO_SYNTH to the code and
modify the code.

2. Enable macro NO_SYNTH, execute the C/C++ simulation,

and save the results.

3. Disable the macro NO_SYNTH, and execute the C/C++

simulation to verify that the results are identical.
4. Perform synthesis with the user-defined macro disabled.

This methodology ensures that the updated code is validated with

C/C++ simulation and that the identical code is then synthesized

TA
C

-H
E
P

 2
0

2
5

Pointer Limitation

✘General pointer casting is not
supported by Vitis HLS

April 10, 2025TAC-HEP: FPGA training module - Varun Sharma 10

int num = 10;
void *ptr = # // Void pointer pointing to an integer
// Cast the void pointer to an integer pointer
int *intPtr = (int *)ptr;

int (*funcPtr)(int, int);

✓ Pointer arrays are supported

✓Given they points to scalar or an array of scalars
✗Arrays of pointers can’t point to additional pointers

✘Function pointers are not supported

TA
C

-H
E
P

 2
0

2
5

Recursive Functions

April 10, 2025TAC-HEP: FPGA training module - Varun Sharma 11

✘Recursive functions can’t be synthesized (function that can perform

multiple recursions)

✘Tail recursions are also not allowed (finite number of function calls)

unsigned foo (unsigned n)
{
 if (n == 0 || n == 1) return 1;
 return (foo(n-2) + foo(n-1));
}

unsigned foo (unsigned m, unsigned n)
{
 if (m == 0) return n;
 if (n == 0) return m;
 return foo(n, m%n);
}

TA
C

-H
E
P

 2
0

2
5

Standard Template Libraries (STL)

• Many C++ STLs contain function recursion and use dynamic
memory allocation

• These can NOT be synthesized by Vitis HLS

• Solution:
• Create a local function with identical functionality that does not feature

recursion, dynamic memory allocation, or dynamic creating and
destruction of objects.

• Example: std::vector, std::map, std::list, std::sort

April 10, 2025TAC-HEP: FPGA training module - Varun Sharma 12

TA
C

-H
E
P

 2
0

2
5

Undefined Behaviors
The C/C++ undefined behaviors is allowed but may lead to a different behavior
in simulation and synthesis

April 10, 2025TAC-HEP: FPGA training module - Varun Sharma 13

for (int i=0; i< N; i++) {

 int val; //un-initialized value

 if (i == 0) val = 0;

 else if (cond) val = 1;

 // val may have intermediate value here
 A[i] = val; //undefined behavior

 val++; // dead code

Behavior between GCC and HLS when
compiling code is likely to be different

Lead to a mis-match during RTL/co-
simulation

• In GCC compiled for CPU, the value of val may be retained across loop iterations, as it could

remain in the same register or stack location

• Good Practise:

• Initialize val at the start of each iteration if this behavior is expected.
• Move the declaration of val above the loop so that its lifetime matches the intended reuse.

Do not expect the compiler to infer a specific defined RTL behavior from undefined C/C++ behavior

TA
C

-H
E
P

 2
0

2
5

Some common errors/warnings

April 10, 2025TAC-HEP: FPGA training module - Varun Sharma 14

WARNING: [RTGEN 206-101] Setting dangling out port 'example/A_WEN_A' to 0 WARNING: [RTGEN 206-101] Setting
dangling out port 'example/A_Din_A' to 0

This means HLS generated write-enable (WEN) and data-in (Din) ports for array A, but they are never

written to in the design — so those outputs are dangling (unused) and set to 0.

#pragma HLS INTERFACE ap_const port=A

#pragma HLS INTERFACE ap_const port=B

AXI4 memory-mapped interfaces require data widths in bytes (multiples
of 8 bits)

ERROR: [XFORM 203-801] Interface parameter bitwidth 'A.V' (example.cpp:8:1) must be a multiple of 8 for AXI4
master port

These are read-only and won’t generate

write ports (no WEN, Din)

TA
C

-H
E
P

 2
0

2
5

Some common errors/warnings

April 10, 2025TAC-HEP: FPGA training module - Varun Sharma 15

This warning is super common in HLS when multiple accesses happen to the same memory (like arrays A, B, or C)
in the same clock cycle, but the default memory core only has one read and one write port

• HLS maps arrays to block RAMs (usually single-port or dual-port).
• When you pipeline loops (like with #pragma HLS PIPELINE), multiple operations might try to read/write to the

same array at once.
• Since BRAM has limited ports, it throws a scheduling warning

Try partitioning array: May get rid of the warning

WARNING: [SCHED 204-69] Unable to schedule 'load' operation ('A_load_2', example.cpp:22) on array 'A' due to limited memory ports.
Please consider using a memory core with more ports or partitioning the array 'A'.

TA
C

-H
E
P
 2

0
2

5

Matrix Multiplication

April 10, 2025TAC-HEP: FPGA training module - Varun Sharma 16

TA
C

-H
E
P

 2
0

2
5

Matrix multiplication

April 10, 2025TAC-HEP: FPGA training module - Varun Sharma 17

#include <ap_int.h>
#include <hls_stream.h>

#include "example.h"

// Top-level function for HLS
void example(din_t A[N][N], din_t B[N][N], din_t C[N][N]) {
#pragma HLS INTERFACE m_axi port=A
#pragma HLS INTERFACE m_axi port=B
#pragma HLS INTERFACE m_axi port=C

 // Matrix multiplication
 for (size_t i = 0; i < N; i++) {
 for (size_t j = 0; j < N; j++) {
#pragma HLS PIPELINE II=1
 din_t sum = 0;
 for (size_t k = 0; k < N; k++) {

 sum += A[i][k] * B[k][j];
 }
 C[i][j] = sum;
 }
 }
}

TA
C

-H
E
P
 2

0
2

5

Pragmas Unroll

April 10, 2025TAC-HEP: FPGA training module - Varun Sharma 18

TA
C

-H
E
P

 2
0

2
5

UNROLL Example

#include <ap_int.h>

#include <hls_stream.h>

#include "example.h"

void example(din_t A[N], din_t B[N], din_t C[N]) {

for (size_t i = 0; i < N; ++i) {

#pragma HLS UNROLL factor = 4

 C[i] = A[i] + B[i];

 }

}

April 10, 2025TAC-HEP: FPGA training module - Varun Sharma 19

TA
C

-H
E
P

 2
0

2
5

Assignment-6

• Use example in slide-3 of lecture 17 to reduce resource utilization
– specially the DSP usage (https://github.com/varuns23/TAC-HEP-
FPGA/tree/main/tutorial/wk9lec17/ex-func)
• You can use a combination of sub-set of following pragmas:

• Array Partition
• Array reshape
• Pipeline
• Dataflow
• Latency
• Allocation
• INLINE

• Objective: To have DSP usage less than 10

• Refer to ex-all folder for example with pragmas

April 10, 2025TAC-HEP: FPGA training module - Varun Sharma 20

https://github.com/varuns23/TAC-HEP-FPGA/tree/main/tutorial/wk9lec17/ex-func
https://github.com/varuns23/TAC-HEP-FPGA/tree/main/tutorial/wk9lec17/ex-func

TA
C

-H
E
P

 2
0

2
5

Reminder: Assignments
• Assignment-1 (13-02-2025)

• Assignment-2 (18-02-2025)

• Assignment-3 (27-02-2025)

• Assignment-4 (18-03-2025)

• Assignment-5 (18-03-2025)

April 10, 2025TAC-HEP: FPGA training module - Varun Sharma

Uploaded to cernbox: https://cernbox.cern.ch/s/gmUqRDHTxDLqx4M

Submit in 2 weeks from date of assignment

Send via email: varun.sharma@cern.ch

21

https://cernbox.cern.ch/s/gmUqRDHTxDLqx4M

TA
C

-H
E
P
 2

0
2

5

Questions?

April 10, 2025TAC-HEP: FPGA training module - Varun Sharma

Acknowledgements:

- https://docs.amd.com/r/2024.1-English/ug1399-vitis-hls

- ug871-vivado-high-level-synthesis-tutorial.pdf

22

https://docs.amd.com/r/2024.1-English/ug1399-vitis-hls

TA
C

-H
E
P

 2
0

2
5

List of Available Pragmas

April 10, 2025TAC-HEP: FPGA training module - Varun Sharma 23

TA
C

-H
E
P

 2
0

2
5

Reminder: HLS Setup

• ssh <username>@cmstrigger02-via-login -L5901:localhost:5901

• Or whatever :1 display number

• Sometimes you may need to run vncserver -localhost -geometry
1024x768 again to start new vnc server

• Connect to VNC server (remote desktop) client

• Open terminal

• source /opt/Xilinx/Vivado/2020.1/settings64.sh

• cd /scratch/`whoami`

• vivado_hls

• Source /opt/Xilinx/Vitis/2020.1/settings64.sh

• Cd /scratch/`whoami`

• vitis_hls

April 10, 2025TAC-HEP: FPGA training module - Varun Sharma

OR

24

TA
C

-H
E
P

 2
0

2
5

Jargons

April 10, 2025

● ICs - Integrated chip: assembly of hundreds of millions of transistors on a minor chip

● PCB: Printed Circuit Board

● LUT - Look Up Table aka ‘logic’ - generic functions on small bitwidth inputs. Combine many to build the algorithm

● FF - Flip Flops - control the flow of data with the clock pulse. Used to build the pipeline and achieve high throughput

● DSP - Digital Signal Processor - performs multiplication and other arithmetic in the FPGA

● BRAM - Block RAM - hardened RAM resource. More efficient memories than using LUTs for more than a few elements

● PCIe or PCI-E - Peripheral Component Interconnect Express: is a serial expansion bus standard for connecting a computer to

one or more peripheral devices

● InfiniBand is a computer networking communications standard used in high-performance computing that features very high

throughput and very low latency

● HLS - High Level Synthesis - compiler for C, C++, SystemC into FPGA IP cores

● HDL - Hardware Description Language - low level language for describing circuits

● RTL - Register Transfer Level - the very low level description of the function and connection of logic gates

● FIFO – First In First Out memory

● Latency - time between starting processing and receiving the result

○ Measured in clock cycles or seconds

● II - Initiation Interval - time from accepting first input to accepting next input

TAC-HEP: FPGA training module - Varun Sharma 25

TA
C

-H
E
P

 2
0

2
5

April 10, 2025TAC-HEP: FPGA training module - Varun Sharma 33

	Slide 1
	Slide 2: Content
	Slide 3: Different IPs on VU13P
	Slide 4: Unsupported C/C++ Constructs
	Slide 5: C/C++ constructs
	Slide 6: System Calls
	Slide 7: Dynamic Memory Usage
	Slide 8: Example
	Slide 9: Dynamic Memory Usage
	Slide 10: Pointer Limitation
	Slide 11: Recursive Functions
	Slide 12: Standard Template Libraries (STL)
	Slide 13: Undefined Behaviors
	Slide 14: Some common errors/warnings
	Slide 15: Some common errors/warnings
	Slide 16: Matrix Multiplication
	Slide 17: Matrix multiplication
	Slide 18: Pragmas Unroll
	Slide 19: UNROLL Example
	Slide 20: Assignment-6
	Slide 21: Reminder: Assignments
	Slide 22: Questions?
	Slide 23: List of Available Pragmas
	Slide 24: Reminder: HLS Setup
	Slide 25: Jargons
	Slide 33

