
Traineeships in Advanced Computing
for High Energy Physics (TAC-HEP)

Varun Sharma

University of Wisconsin – Madison, USA

FPGA module training

Week-10

Lecture-18: 08/04/2025

TA
C

-H
E
P

 2
0

2
5

Content

April 8, 2025TAC-HEP: FPGA training module - Varun Sharma

So far
• HLS Pragmas:

• Interface

• Array Partition

• Array reshape

• Pipeline
• Dataflow

• Latency

• Allocation

• Stable

• Inline
• Unroll

Today
• Revisit Pragma Interface
• Examples for HLS Pragmas:
• Inline

• Stable

2

TA
C

-H
E
P

 2
0

2
5

Interface overview

April 8, 2025TAC-HEP: FPGA training module - Varun Sharma 3

Interfaces define 3 key aspects of an HLS kernel:
1. Data Channels:

• Enable data transfer into/out of the HLS design
• Sources: host application, sensors, external IPs, or other kernels.
• Default: AXI adapters (e.g., AXI4-Stream, AXI4-Memory).

2. Port-Level Protocols:
• Control when data is valid for read/write.
• Protocols manage flow using signals like TVALID, TREADY, etc.
• Can be customized in Vivado IP flow, fixed in Vitis kernel flow.

3. Execution Control Scheme:
• Defines kernel/IP operation as pipelined or sequential.
• Controlled by block-level protocols.

Function arguments in HLS are synthesized into interfaces and ports
• These group multiple signals and define communication protocols.

• The goal: connect HLS components to external elements

• Example: memory, host, sensors

TA
C

-H
E
P

 2
0

2
5

Defining Interfaces: examples

April 8, 2025TAC-HEP: FPGA training module - Varun Sharma 4

Image processing from a camera
• Apply a filter to live video

• Camera sends pixel data via

AXI-4 stream to an HLS block

• Processes image in real time
• Output stream sent to display or

written to memory

Accelerating Matrix Multiplication with external DDR
• Large matrix multiplication that can’t fit on-chip

• Host application sends matrices to external DDR memory

• Reads matrices using AXI-4 memory mapped interface

• Performs multiplication
• Writes result back to memory

HLS block connected to external

camera (sensor) via streaming

interface

HLS block connected to DDR memory through an AXI

interface

Function arguments in HLS are synthesized into interfaces and ports

• These group multiple signals and define communication protocols.
• The goal: connect HLS components to external elements

• Example: memory, host, sensors

TA
C

-H
E
P

 2
0

2
5

Defining Interfaces: examples

April 8, 2025TAC-HEP: FPGA training module - Varun Sharma 5

Data Transfer from Host CPU
• Offload compute-heavy operation (e.g. encryption) to FPGA

• Sends data via PCIe to FPGA

• HLS kernel receives data through AXI-4 stream

• Processes encription
• Sends results back to host

HLS block interfaces using AXI4-stream and AXI-Lite (for control)

Function arguments in HLS are synthesized into interfaces and ports

• These group multiple signals and define communication protocols.
• The goal: connect HLS components to external elements

• Example: memory, host, sensors

TA
C

-H
E
P

 2
0

2
5

Interface type

April 8, 2025TAC-HEP: FPGA training module - Varun Sharma 6

Interface type is chosen automatically by the tool based on:

o Data type and direction of each argument

o The target flow (Vivado IP flow or Vitis Kernel flow)

o Default interface settings

o Any applied INTERFACE pragmas/directives

Choosing and configuring the right interface is critical for design success

TA
C

-H
E
P

 2
0

2
5

Target Flows

Vivado IP Flow: Creates custom RTL IP blocks to integrate into a larger FPGA design (via Vivado)

• HLS generates RTL IP → Added to Vivado Block Design.

• One can use AXI interfaces, but you have full control over customization.

• Supports manual control of interfaces (can customize protocols, ports, etc.).

• Great for FPGA developers building entire systems in Vivado

• Packaged IP block that you integrate into a Vivado design project

Vitis Kernel Flow: Used in application acceleration design

• Writing accelerator kernels that run on an FPGA as part of a heterogeneous system (with host CPU + FPGA), e.g., on
a Zynq or Alveo card

• HLS function becomes a Vitis kernel.

• Interacts with host software via OpenCL/XRT runtime.

• Interfaces are automatically set (AXI-Stream for data, AXI-Lite for control).

• No manual tweaking of interface protocols — standardized for portability.

• A compiled kernel (e.g., .xo) used in Vitis platforms and applications

April 8, 2025TAC-HEP: FPGA training module - Varun Sharma 7

TA
C

-H
E
P

 2
0

2
5

Advanced eXtensible Interface (AXI)

AXI is part of ARM AMBA, a family of micro controller buses first introduced in 1996

There are three types of AXI4 interfaces:

• AXI4 (m_axi): For high-performance memory-mapped requirements

• Specify on array and pointers (and references in C++)

• AXI4-Lite (s_axilite): For simple, low-throughput memory-mapped communication
(for example, to and from control and status registers)

• Can be used on any type of argument except streams

• AXI4-Stream (axis): For high-speed streaming data

• Use this protocol on input arguments or output arguments only,

April 8, 2025TAC-HEP: FPGA training module - Varun Sharma 8

TA
C

-H
E
P

 2
0

2
5

Pragma HLS interface

April 8, 2025TAC-HEP: FPGA training module - Varun Sharma 9

TA
C

-H
E
P
 2

0
2

5

Pragmas INLINE & STABLE

April 8, 2025TAC-HEP: FPGA training module - Varun Sharma 10

TA
C

-H
E
P

 2
0

2
5

Pragma HLS Inline

• Controls function inlining

• The function is dissolved into the calling function and no longer appears as a
separate level of hierarchy in RTL design

• Improves performance by exposing more parallelism

• Increase area as it duplicates logic

• Reduce latency (fewer control steps)

April 8, 2025TAC-HEP: FPGA training module - Varun Sharma

Function inlining

11

#pragma HLS INLINE <recursive | OFF>

TA
C

-H
E
P

 2
0

2
5

Pragma INLINE: Example

April 8, 2025TAC-HEP: FPGA training module - Varun Sharma 12

#include "example.h"

void example (int input[N], int output[N]) {
 for_Loop:
 for (size_t i=0 ; i < N; i++) {
 output[i] = square(abs_val(input[i]));
 }
}

int square(int a){
//#pragma HLS INLINE OFF
 return a*a;
}

int abs_val(int a){
//#pragma HLS INLINE OFF
 return (a < 0) ? -a : a;
}

TA
C

-H
E
P

 2
0

2
5

Pragma HLS Stable – Example 1

April 8, 2025TAC-HEP: FPGA training module - Varun Sharma 13

void matrix_multiply(int A[N][N], int B[N][N], int C[N][N]) {
 #pragma HLS stable variable=A
 #pragma HLS stable variable=B

 for (int i = 0; i < N; i++) {
 for (int j = 0; j < N; j++) {
 C[i][j] = 0;
 for (int k = 0; k < N; k++) {
 C[i][j] += A[i][k] * B[k][j];
 }
 }
 }
}

#pragma HLS STABLE variable=<name>

• Arrays A and B maintain STABLE

and deterministic behavior

across multiple synthesis runs

• Especially helpful when you're
performing matrix multiplication

TA
C

-H
E
P

 2
0

2
5

Pragma HLS Stable – Example 2

April 8, 2025TAC-HEP: FPGA training module - Varun Sharma 14

void process_buffer(int data[N]) {
 #pragma HLS stable variable=data

 int temp[N];
 for (int i = 0; i < N; i++) {
 temp[i] = data[i] * 2;
 }

 for (int i = 0; i < N; i++) {
 data[i] = temp[i] + 5;
 }
}

Working with a buffer and want to pipeline the operations:

• Use of STABLE directive can ensure that the input/output

behavior of the buffer doesn't change unpredictably

during pipelining

• Without the stable directive, the tool might optimize the

loop in a way that would change the data access

patterns, leading to unpredictable results.

TA
C

-H
E
P

 2
0

2
5

When NOT stable

April 8, 2025TAC-HEP: FPGA training module - Varun Sharma 15

In HLS, a variable is considered unstable if its behavior
• Such as value, timing, or memory access pattern: can change between synthesis runs,

even when the functional source code stays the same
• This instability is usually due to compiler optimizations or design

transformations performed by the HLS tool

• These changes are often valid from a software perspective, but in hardware design,
they might affect timing, control logic, latency, or verification.

TA
C

-H
E
P
 2

0
2

5

What can cause these IN-STABILITY

April 8, 2025TAC-HEP: FPGA training module - Varun Sharma 16

TA
C

-H
E
P

 2
0

2
5

Instability factors
Loop transformations (loop unrolling, pipelining)

• Number of times variables is accessed or updated

• Pipelining can overlap iterations & change the timing

Function Inlining & Optimization

• HLS may choose to inline a function or change the way it handles intermediate variables or buffers
inside a function, affecting how a variable is stored, updated, or synthesized

Data Dependency Analysis

• Assumes a variable has no dependencies when it actually does (or vice versa), it may reorder or
parallelize operations in a way that changes the variable’s behavior.

Resource Sharing

• Share registers between variables.

• Map different variables to the same memory resource

April 8, 2025TAC-HEP: FPGA training module - Varun Sharma 17

TA
C

-H
E
P

 2
0

2
5

Unstability factors

Bit-Width or Precision Optimizations

• If HLS tools infer or optimize variable bit-widths based on usage patterns, the inferred width
(and resulting hardware) might vary between synthesis runs if inputs change slightly

Changing Clock Constraints / Timing Goals

• When timing goals change (e.g., tighter latency or initiation interval), HLS might restructure
logic around a variable, making its storage or update behavior different

Random Seeds or Tool Heuristics

• Some HLS tools use internal seeds that can affect scheduling, binding, or resource
allocation

• This can cause small changes in synthesis output from run to run

April 8, 2025TAC-HEP: FPGA training module - Varun Sharma 18

TA
C

-H
E
P
 2

0
2

5

Can we make all variables STABLE

April 8, 2025TAC-HEP: FPGA training module - Varun Sharma 19

TA
C

-H
E
P

 2
0

2
5

All Variables as Stable

Loss of Optimization:

• Marking variables as stable restricts the HLS tool's freedom to optimize things like:
• Loop pipelining
• Resource sharing
• Parallelization

Increased Resource Usage

• Variables marked stable might be mapped to dedicated registers or memory,
avoiding sharing even when safe

Longer Synthesis Time

• The tool might work harder to maintain the "stable" access/timing pattern, leading
to Longer synthesis runs and Harder timing closure

April 8, 2025TAC-HEP: FPGA training module - Varun Sharma 20

Use Stable Like You’d Use const in C++

TA
C

-H
E
P

 2
0

2
5

Assignment-6

• Use example in slide-3 of lecture 17 to reduce resource utilization
– specially the DSP usage (https://github.com/varuns23/TAC-HEP-
FPGA/tree/main/tutorial/wk9lec17/ex-func)
• You can use a combination of sub-set of following pragmas:

• Array Partition
• Array reshape
• Pipeline
• Dataflow
• Latency
• Allocation
• INLINE

• Objective: To have DSP usage less than 10

• Refer to ex-all folder for example with pragmas

April 8, 2025TAC-HEP: FPGA training module - Varun Sharma 21

https://github.com/varuns23/TAC-HEP-FPGA/tree/main/tutorial/wk9lec17/ex-func
https://github.com/varuns23/TAC-HEP-FPGA/tree/main/tutorial/wk9lec17/ex-func

TA
C

-H
E
P

 2
0

2
5

Reminder: Assignments
• Assignment-1 (13-02-2025)

• Assignment-2 (18-02-2025)

• Assignment-3 (27-02-2025)

• Assignment-4 (18-03-2025)

• Assignment-5 (18-03-2025)

April 8, 2025TAC-HEP: FPGA training module - Varun Sharma

Uploaded to cernbox: https://cernbox.cern.ch/s/gmUqRDHTxDLqx4M

Submit in 2 weeks from date of assignment

Send via email: varun.sharma@cern.ch

22

https://cernbox.cern.ch/s/gmUqRDHTxDLqx4M

TA
C

-H
E
P
 2

0
2

5

Questions?

April 8, 2025TAC-HEP: FPGA training module - Varun Sharma

Acknowledgements:

- https://docs.amd.com/r/2024.1-English/ug1399-vitis-hls

- ug871-vivado-high-level-synthesis-tutorial.pdf

23

https://docs.amd.com/r/2024.1-English/ug1399-vitis-hls

TA
C

-H
E
P

 2
0

2
5

List of Available Pragmas

April 8, 2025TAC-HEP: FPGA training module - Varun Sharma 24

TA
C

-H
E
P

 2
0

2
5

Reminder: HLS Setup

• ssh <username>@cmstrigger02-via-login -L5901:localhost:5901

• Or whatever :1 display number

• Sometimes you may need to run vncserver -localhost -geometry
1024x768 again to start new vnc server

• Connect to VNC server (remote desktop) client

• Open terminal

• source /opt/Xilinx/Vivado/2020.1/settings64.sh

• cd /scratch/`whoami`

• vivado_hls

• Source /opt/Xilinx/Vitis/2020.1/settings64.sh

• Cd /scratch/`whoami`

• vitis_hls

April 8, 2025TAC-HEP: FPGA training module - Varun Sharma

OR

25

TA
C

-H
E
P

 2
0

2
5

Jargons

April 8, 2025

● ICs - Integrated chip: assembly of hundreds of millions of transistors on a minor chip

● PCB: Printed Circuit Board

● LUT - Look Up Table aka ‘logic’ - generic functions on small bitwidth inputs. Combine many to build the algorithm

● FF - Flip Flops - control the flow of data with the clock pulse. Used to build the pipeline and achieve high throughput

● DSP - Digital Signal Processor - performs multiplication and other arithmetic in the FPGA

● BRAM - Block RAM - hardened RAM resource. More efficient memories than using LUTs for more than a few elements

● PCIe or PCI-E - Peripheral Component Interconnect Express: is a serial expansion bus standard for connecting a computer to

one or more peripheral devices

● InfiniBand is a computer networking communications standard used in high-performance computing that features very high

throughput and very low latency

● HLS - High Level Synthesis - compiler for C, C++, SystemC into FPGA IP cores

● HDL - Hardware Description Language - low level language for describing circuits

● RTL - Register Transfer Level - the very low level description of the function and connection of logic gates

● FIFO – First In First Out memory

● Latency - time between starting processing and receiving the result

○ Measured in clock cycles or seconds

● II - Initiation Interval - time from accepting first input to accepting next input

TAC-HEP: FPGA training module - Varun Sharma 26

TA
C

-H
E
P

 2
0

2
5

April 8, 2025TAC-HEP: FPGA training module - Varun Sharma 34

	Slide 1
	Slide 2: Content
	Slide 3: Interface overview
	Slide 4: Defining Interfaces: examples
	Slide 5: Defining Interfaces: examples
	Slide 6: Interface type
	Slide 7: Target Flows
	Slide 8: Advanced eXtensible Interface (AXI)
	Slide 9: Pragma HLS interface
	Slide 10: Pragmas INLINE & STABLE
	Slide 11: Pragma HLS Inline
	Slide 12: Pragma INLINE: Example
	Slide 13: Pragma HLS Stable – Example 1
	Slide 14: Pragma HLS Stable – Example 2
	Slide 15: When NOT stable
	Slide 16: What can cause these IN-STABILITY
	Slide 17: Instability factors
	Slide 18: Unstability factors
	Slide 19: Can we make all variables STABLE
	Slide 20: All Variables as Stable
	Slide 21: Assignment-6
	Slide 22: Reminder: Assignments
	Slide 23: Questions?
	Slide 24: List of Available Pragmas
	Slide 25: Reminder: HLS Setup
	Slide 26: Jargons
	Slide 34

