
Traineeships in Advanced Computing 
for High Energy Physics (TAC-HEP)

Varun Sharma
University of Wisconsin – Madison, USA

FPGA module training

Week-11

Lecture-20: 15/04/2025



TA
C

-H
EP

 2
02

5

Content

April 15, 2025TAC-HEP: FPGA training module - Varun Sharma

So far
• HLS Pragmas:

• Interface
• Array Partition
• Array reshape
• Pipeline
• Dataflow
• Latency
• Allocation
• Stable
• Inline
• Unroll

Today
• Kernel Optimzation
• HLS Pragmas

• Aggregate, 
Expression_balance, 
performance, protocol

2



TA
C

-H
EP

 2
02

5

Assignment-6a
• Use example in slide-3 of lecture 17 to reduce resource utilization 
– specially the DSP usage (https://github.com/varuns23/TAC-HEP-
FPGA/tree/main/tutorial/wk9lec17/ex-func )

• You can use a combination of sub-set of following pragmas:
• Array Partition
• Array reshape
• Pipeline
• Dataflow
• Latency
• Allocation
• INLINE

• Objective: Remove usage of DSP 
• Refer to ex-all folder for example with pragmas

April 15, 2025TAC-HEP: FPGA training module - Varun Sharma 3

https://github.com/varuns23/TAC-HEP-FPGA/tree/main/tutorial/wk9lec17/ex-func
https://github.com/varuns23/TAC-HEP-FPGA/tree/main/tutorial/wk9lec17/ex-func


TA
C

-H
EP

 2
02

5

Assignment-7
• Example: https://github.com/varuns23/TAC-HEP-

FPGA/tree/main/tutorial/wk11lec20/ex-matmul 
• Run code for N=64 and use the sorter get a sorted output

• May require restructuring of C-code
• Add pragmas in order to minimize the resource utilization & timing 

constraints and synthesize the code

April 15, 2025TAC-HEP: FPGA training module - Varun Sharma 4

https://github.com/varuns23/TAC-HEP-FPGA/tree/main/tutorial/wk11lec20/ex-matmul
https://github.com/varuns23/TAC-HEP-FPGA/tree/main/tutorial/wk11lec20/ex-matmul


TA
C

-H
EP

 2
02

5

Kernel in HLS
• Specific, reusable module or function that performs computational tasks on FPGA
• Naïve code often leads to poor hardware designs

• Kernel optimization is essential to
• Reach timing & resource constraints
• Maximize performance of the hardware accelerator
• Minimize power and area for embedded or constrained environments
• Exploit the parallelism and pipelining possible in hardware

April 15, 2025TAC-HEP: FPGA training module - Varun Sharma 5



TA
C

-H
EP

 2
02

5

Kernel Optimization Pragmas

April 15, 2025TAC-HEP: FPGA training module - Varun Sharma 6



TA
C

-H
EP

 2
02

5

Pragma HLS AGGREGATE
Collects and groups struct data fields into a single wide scalar (wider word width)

Uses the AGGREGATE pragma to enable simultaneous read/write of all struct members

Bit alignment is based on the order of struct elements:
• First element aligns with the LSB.
• Last element aligns with the MSB.

Arrays within the struct are:
• Fully partitioned
• Reshaped similarly to ARRAY_RESHAPE
• Packed into the wide scalar along with other elements

April 15, 2025TAC-HEP: FPGA training module - Varun Sharma 7

Kernel Optimization



TA
C

-H
EP

 2
02

5

Pragma HLS AGGREGATE: Syntax

April 15, 2025TAC-HEP: FPGA training module - Varun Sharma 8

#pragma HLS AGGREGATE variable=<var>  compact=<arg>

• variable = <variable>: Specifies the variable to be grouped

• compact = [bit | byte | none | auto]: Specifies the alignment of the 
aggregated struct
• Alignment can be on the bit-level, the byte-level, none, or 

automatically determined by the tool which is the default behavior

Caution: Careful while using AGGREGATE optimization on struct objects with large arrays. If an array has 4096 
elements of type int, this will result in a vector (and port) of width 4096×32=131072 bits. The Vitis HLS tool can 
create this RTL design, however it is very unlikely logic synthesis will be able to route this during the FPGA 
implementation.



TA
C

-H
EP

 2
02

5

HLS AGGREGATE: Example-1

April 15, 2025TAC-HEP: FPGA training module - Varun Sharma 9

#include <ap_int.h>

typedef struct {
    ap_uint<8>  a;
    ap_uint<16> b;
    ap_uint<32> c;
} my_struct;

void process(my_struct in[4], my_struct out[4]) {
#pragma HLS AGGREGATE variable=in compact=bit
#pragma HLS AGGREGATE variable=out compact=bit
#pragma HLS PIPELINE

    for (int i = 0; i < 4; i++) {
        out[i].a = in[i].a + 1;
        out[i].b = in[i].b + 2;
        out[i].c = in[i].c + 3;
    }
}

HLS combines all fields into a single wide 
port, improving efficiency on AXI streams or 
memory-mapped interfaces



TA
C

-H
EP

 2
02

5

HLS AGGREGATE: Example-1

April 15, 2025TAC-HEP: FPGA training module - Varun Sharma 10

#include <ap_int.h>

typedef struct {
    ap_uint<8>  a;
    ap_uint<16> b;
    ap_uint<32> c;
} my_struct;

void process(my_struct in[4], my_struct out[4]) {
#pragma HLS AGGREGATE variable=in compact=bit
#pragma HLS AGGREGATE variable=out compact=bit
#pragma HLS PIPELINE

    for (int i = 0; i < 4; i++) {
        out[i].a = in[i].a + 1;
        out[i].b = in[i].b + 2;
        out[i].c = in[i].c + 3;
    }
}

HLS combines all fields into a single wide 
port, improving efficiency on AXI streams or 
memory-mapped interfaces

Without AGGREGATE, the struct might use 
separate interface ports.



TA
C

-H
EP

 2
02

5

HLS AGGREGATE: Example-2

April 15, 2025TAC-HEP: FPGA training module - Varun Sharma 11

#include <hls_stream.h>
#include <ap_axi_sdata.h>

typedef struct {
    ap_uint<8>  id;
    ap_uint<16> val;
} packet_t;

typedef ap_axiu<32, 0, 0, 0> axis_t;

void pack_stream(hls::stream<packet_t> &in, hls::stream<axis_t> &out) {
#pragma HLS AGGREGATE variable=in compact=bit
#pragma HLS INTERFACE axis port=in
#pragma HLS INTERFACE axis port=out
#pragma HLS PIPELINE

    packet_t pkt = in.read();
    axis_t out_pkt;
    out_pkt.data = (pkt.val, pkt.id);  // concat into 24 bits
    out_pkt.last = 0;
    out.write(out_pkt);
}

typedef struct{
unsigned char R, G, B;
} pixel;

pixel AB[17];
#pragma HLS aggregate variable=AB



TA
C

-H
EP

 2
02

5

Pragma HLS Expression_balance
• Sequential C/C++ operations can form long RTL operation chains, increasing 

latency with small clock periods.

• Vitis HLS rearranges operations using associative and commutative properties to 
reduce latency

• This rearrangement forms a balanced tree of operations, known as expression 
balancing. Defaults:

• Enabled for integer operations
• Disabled for floating point operation

April 15, 2025TAC-HEP: FPGA training module - Varun Sharma 12

Kernel Optimization

#pragma HLS Expression_balnce



TA
C

-H
EP

 2
02

5

Expression_balance: Example

April 15, 2025TAC-HEP: FPGA training module - Varun Sharma 13

void top_function(int A[SIZE], int B[SIZE], int C[SIZE]) {
#pragma HLS DATAFLOW
#pragma HLS expression_balance

    hls::stream<int> a_s, b_s, sum_s;

#pragma HLS STREAM variable=a_s depth=2
#pragma HLS STREAM variable=b_s depth=2
#pragma HLS STREAM variable=sum_s depth=2

    load(A, B, a_s, b_s);
    add(a_s, b_s, sum_s);
    multiply_by_two(sum_s, C);



TA
C

-H
EP

 2
02

5

Pragma HLS Performance

April 15, 2025TAC-HEP: FPGA training module - Varun Sharma 14

Kernel Optimization

The PERFORMANCE pragma/directive sets lets you specify a high-level constraint
• loop execution timing (target_ti or target_tl)
• Helps guide the tool to apply lower-level optimizations 

like UNROLL, PIPELINE, ARRAY_PARTITION, and INLINE

The directive does not guarantee the specified performance — it's only a goal.

target_ti: target transaction interval - number of clock cycles for the function, loop or 
region of code to complete an iteration
target_tl: target latency - number of clock cycles for the loop to complete all iterations

#pragma HLS performance target_ti=<value> target_tl=<value> unit=[sec|cycle]



TA
C

-H
EP

 2
02

5

HLS Performance: Example

April 15, 2025TAC-HEP: FPGA training module - Varun Sharma 15

for (int i =0; i < 1000; ++i) {

#pragma HLS performance target_ti=1000
  
   for (int j = 0; j < 8; ++j) {
      int tmp = b_buf[j].read();
      b[i * 8 + j] = tmp + 2;
    }
  }



TA
C

-H
EP

 2
02

5

Pragma HLS Protocol
• Defines a protocol region where no clock operations are inserted by Vitis 

HLS unless explicitly coded
• Ensures no clocks between operations, including reads/writes to function 

arguments
• Maintains the exact order of reads and writes in the synthesized RTL
• A protocol region is defined using braces {} and a name
• Ensures that reads and writes happen in the exact order written in the C/C++ 

code

April 15, 2025TAC-HEP: FPGA training module - Varun Sharma 16

Kernel Optimization

#pragma HLS protocol [floating | fixed]



TA
C

-H
EP

 2
02

5

Pragma HLS Protocol

April 15, 2025TAC-HEP: FPGA training module - Varun Sharma 17

Kernel Optimization

#pragma HLS protocol [floating | fixed]

Floating: Lets code statements outside the protocol region overlap and execute in parallel with statements 
in the protocol region in the final RTL. The protocol region remains cycle accurate, but outside operations 
can occur at the same time. This is the default mode

Fixed: The fixed mode ensures that statements outside the protocol region do not execute in parallel with 
the protocol region.



TA
C

-H
EP

 2
02

5

Protocol: Example

April 15, 2025TAC-HEP: FPGA training module - Varun Sharma 18

#include <hls_stream.h>
#include <ap_int.h>

void stream_modifier(hls::stream<ap_uint<32>> &in_stream,
                     hls::stream<ap_uint<32>> &out_stream) {
    #pragma HLS interface axis port=in_stream
    #pragma HLS interface axis port=out_stream
    #pragma HLS interface ap_ctrl_none port=return

    {
        #pragma HLS protocol fixed  // ensures tight control over read-modify-write

        ap_uint<32> data_in = in_stream.read();  // AXI handshaking happens here
        ap_uint<32> data_out = data_in + 1;
        out_stream.write(data_out);              // AXI handshaking happens here
    }
}



TA
C

-H
EP

 2
02

5

Protocol: when to use
• Cycle-accurate control over I/O or memory accesses

• Allows to define exact timing and handshaking signals for function interface – 
crucial when interacting with external hardware or memory interfaces with strict 
timing requirement

• Custom protocols (e.g., GPIO, SPI-like behavior)
• Interfacing with custom hardware using protocols not directly supported by 

standard HLS interfaces
• Define sequence of reads, writes and control signal transitions

• Low-latency pipelines with precise read/write sequencing
• To override default behavior where HLS inserts waits or splits across cycles

April 15, 2025TAC-HEP: FPGA training module - Varun Sharma 19



TA
C

-H
EP

 2
02

5

Reminder: Assignments
• Assignment-1  (13-02-2025)
• Assignment-2 (18-02-2025)
• Assignment-3 (27-02-2025)
• Assignment-4 (18-03-2025)
• Assignment-5 (18-03-2025)
• Assignment-6 (27-03-2025)
• Assignment-6a (15-04-2025)
• Assignment-7 (15-04-2025)

April 15, 2025TAC-HEP: FPGA training module - Varun Sharma

Uploaded to cernbox: https://cernbox.cern.ch/s/gmUqRDHTxDLqx4M    

Submit in 2 weeks from date of assignment

Send via email: varun.sharma@cern.ch

22

https://cernbox.cern.ch/s/gmUqRDHTxDLqx4M


TA
C

-H
EP

 2
02

5

Questions?

April 15, 2025TAC-HEP: FPGA training module - Varun Sharma

Acknowledgements:
- https://docs.amd.com/r/2024.1-English/ug1399-vitis-hls
- ug871-vivado-high-level-synthesis-tutorial.pdf 

23

https://docs.amd.com/r/2024.1-English/ug1399-vitis-hls

	Slide 1
	Slide 2: Content
	Slide 3: Assignment-6a
	Slide 4: Assignment-7
	Slide 5: Kernel in HLS
	Slide 6: Kernel Optimization Pragmas
	Slide 7: Pragma HLS AGGREGATE
	Slide 8: Pragma HLS AGGREGATE: Syntax
	Slide 9: HLS AGGREGATE: Example-1
	Slide 10: HLS AGGREGATE: Example-1
	Slide 11: HLS AGGREGATE: Example-2
	Slide 12: Pragma HLS Expression_balance
	Slide 13: Expression_balance: Example
	Slide 14: Pragma HLS Performance
	Slide 15: HLS Performance: Example
	Slide 16: Pragma HLS Protocol
	Slide 17: Pragma HLS Protocol
	Slide 18: Protocol: Example
	Slide 19: Protocol: when to use
	Slide 22: Reminder: Assignments
	Slide 23: Questions?
	Slide 32

