
Traineeships in Advanced Computing
for High Energy Physics (TAC-HEP)

Varun Sharma
University of Wisconsin – Madison, USA

GPU & FPGA module training: Part-2

Week-1: FPGA: Parallelism in program execution

Lecture-2: March 22nd 2023

TA
C

-H
EP

 2
02

3

Correct Time

Next Week onwards:

• Tuesdays: 9:00-10:00 CT / 10:00-11:00 ET / 16:00-17:00 CET
• Wednesday: 11:00-12:00 CT / 12:00-13:00 ET / 18:00-19:00 CET

March 22, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 2

TA
C

-H
EP

 2
02

3

Content

March 22, 2023

Fig. 1

Configurable
logic blocks
(CLB)

Programmable
interconnects

Input/output
blocks

Routing
channels

TAC-HEP: GPU & FPGA training module - Varun Sharma 3

Last lecture we covered
introduction to FPGA, its
architecture and sub-
components

Today we will see how
parallelism works in FPGA
program execution

TA
C

-H
EP

 2
02

3

CPU/FPGA Advantages

March 22, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 4

CPU advantages FPGA Advantages
• Better with floating point numbers
• Programming a CPU in normally easier than

programming an FPGA (does not require to
understand digital electronics)

• Faster compilation
• Easier code portability
• Lower unit cost

• More flexible processing
• More flexible input/output
• Parallel processing
• Better with multi-clock systems
• Better with time-critical operations

More and more often, FPGAs and CPUs (or GPUs) are complementary:
They co-exist in the same system and perform different tasks

TA
C

-H
EP

 2
02

3

FPGA/ASIC Advantages

March 22, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 5

FPGA Advantages ASIC Advantages
Faster time-to-market - no layout, masks or other
manufacturing steps are needed
Lower constant/initial cost
Simpler design cycle - due to software that
handles much of the routing, placement, and
timing
More predictable project cycle due to elimination
of potential re-spins, wafer capacities, etc.
Re-programmability: a new configuration can be
uploaded

Full custom capability (including analog) -
since device is manufactured to design
specs
Lower unit costs – For mass production
Smaller form factor - since device is
manufactured to design specs
Higher clock speeds

TA
C

-H
EP

 2
02

3

Uses of FPGAs outside HEP

March 22, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 6

• Telecommunication
• Automotive
• Aerospace and Defense
• Medical Electronics
• ASIC Prototyping
• Audio
• Broadcast
• Consumer Electronics
• Data Center
• Distributed Monetary Systems
• High Performance Computing

• Industrial
• Scientific Instruments
• Security systems
• Video & Image

Processing
• Digital signal processing
• Bioinformatics
• Controllers
• Computer hardware

emulation
• Voice recognition
• Cryptography

TA
C

-H
EP

 2
02

3

FPGA Parallelism

March 22, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 7

TA
C

-H
EP

 2
02

3

Program execution on a Processor
A processor executes a program as a sequence of instructions
• Translated into useful computation for a software application
• Compiler transforms the C/C++ into assemble language

• The assemble code defines the addition operation to compute the value of z in
terms of the internal registers of a processor

• The complete assembly program to compute the value of z is as follows:

• Even a simple operation, such as the addition of two values, results in multiple
assembly instructions

March 22, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 8

TA
C

-H
EP

 2
02

3

Program execution on a Processor

• Depending on the location of a and b, the LD operations take a
different number of clock cycles to complete:
• Processor cache : few 10 clock cycles
• DDR memory: ~100/~1000 clock cycles
• Hard drives: even longer

• Software engineers spend a lot of time restructuring their algorithms
• Increase the spatial locality of data in memory to increase the

cache hit rate and decrease the processor time spent per
instruction.

March 22, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 9

TA
C

-H
EP

 2
02

3

Program execution on FPGA
FPGA is an inherently parallel processing fabric capable of implementing any logical
and arithmetic function that can run on a processor
• Main difference: Vivado HLS compiler

• Transforms software descriptions into RTL, is not hindered by the restrictions of a
cache and a unified memory space

• Computation of z is compiled by Vivado HLS into several LUTs required to achieve
the size of the output operand

• E.g.: In C code, variable a, b, and z are defined with the short data type (16-bit
data container)
• Variables gets implemented as 16 LUTs by Vivado HLS

General rule: 1 LUT is equivalent to 1 bit of computation
March 22, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 10

TA
C

-H
EP

 2
02

3

Program execution on FPGA
• LUTs used for the computation of z are exclusive to this operation ONLY.

• Unlike a processor, where all computations share the same ALU
• FPGA implementation instantiates independent sets of LUTs for each computation in

the software algorithm

• FPGA differs from processor: memory architecture & cost of memory access

• FPGA implementation, the Vivado HLS compiler arranges memories into multiple
storage banks as close as possible to the point of use in the operation
• Results in an instantaneous memory bandwidth, exceeding the capabilities of a

processor

March 22, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 11

TA
C

-H
EP

 2
02

3

Program execution on FPGA
With regard to computational throughput and memory bandwidth, the Vivado
HLS compiler exercises the capabilities of the FPGA fabric through the
processes:
• Scheduling
• Pipelining
• Dataflow

Transparent to the user, these processes are integral stages of the software
compilation process that extract the best possible circuit-level implementation
of the software application.

March 22, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 12

TA
C

-H
EP

 2
02

3

Scheduling

March 22, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 13

Process of identifying the data and control dependencies between different operations
• To Determine which operation occur during each clock cycle based on:

• Length of the clock cycle or clock frequency
• Time it takes for the operation to complete, as defined by the target device
• User-specified optimization directives

• Vivado HLS analyzes dependencies between adjacent operations as well as across time
• Group operations to execute in the same clock cycle and set up the hardware to allow

the overlap of function calls.
• The overlap of function call executions removes the processor restriction that requires the

current function call to fully complete before the next function call to the same set of
operations can begin.

TA
C

-H
EP

 2
02

3

Scheduling

March 22, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 14

E.g.: Scheduling phases for a simple code

First cycle: reads x, a, and b data ports
Second cycle: reads data port c &
generates output y

Fig. 2

https://docs.xilinx.com/v/u/en-US/ug998-vivado-intro-fpga-design-hls

TA
C

-H
EP

 2
02

3

Scheduling

March 22, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 15

E.g.: Scheduling phases for a simple code

First cycle: Multiplication and the first
addition
Second cycle: Second addition and
output generation

Internal register storing a variable

First cycle: reads x, a, and b data ports
Second cycle: reads data port c &
generates output y

Fig. 3

https://docs.xilinx.com/v/u/en-US/ug998-vivado-intro-fpga-design-hls

TA
C

-H
EP

 2
02

3

Scheduling

March 22, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 16

E.g.: Scheduling phases for a simple code

In this example, the arguments are simple
data ports but in hardware implementation
they are I/O ports.

The input data ports are all 8-bits wide (char).

Output data port is 32-bit wide as function
return is a 32-bit int data type

Optimised for the ideal balance of high-
performance and efficient implementation

Fig. 4

https://docs.xilinx.com/v/u/en-US/ug998-vivado-intro-fpga-design-hls

TA
C

-H
EP

 2
02

3

Pipelining
Technique to avoid data dependencies and increase the level of parallelism

• Preserving the original functionality, required circuit is divided into a chain of
independent stages

• All stages in the chain run in parallel on the same clock cycle
• The only difference is the source of data for each stage
• Each stage in the computation receives its data values from the result computed

by the preceding stage during the previous clock cycle

• Vivado HLS compiler instantiates one multiplier and two adder blocks for above
example

March 22, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 17

TA
C

-H
EP

 2
02

3

Pipelining

March 22, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 18

C implementation

Pipelined
implementation

Fig. 5

https://docs.xilinx.com/v/u/en-US/ug998-vivado-intro-fpga-design-hls

TA
C

-H
EP

 2
02

3

Pipelining

March 22, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 19

• Boxes: registers implemented by FF blocks

• Each box column counted as single clock
cycle

• Result in 3 clock cycles.

• Addition of registers, leads to separated
compute sections for each block
• Multiplier & two adders can run in parallel

and reduce latency
Fig. 6

https://docs.xilinx.com/v/u/en-US/ug998-vivado-intro-fpga-design-hls

TA
C

-H
EP

 2
02

3

Pipelining

March 22, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 20

• Both sections of the datapath run in parallel
• Essentially computing the y and y’ in parallel
• y’ result of the next execution

• First computation of y: pipeline fill time = 3
CLK

• After this initial computation, a new value of
y is available at the output on every clock
cycle, because the computation pipeline
contains overlapped data sets for the
current and subsequent y computations

Fig. 7

https://docs.xilinx.com/v/u/en-US/ug998-vivado-intro-fpga-design-hls

TA
C

-H
EP

 2
02

3

Pipelining

March 22, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 21

• Raw data: dark gray,
• Semi-computed data: white
• Final data: light gray

All exist simultaneously & each
stage result is captured in its own
set of registers

Although the latency for such
computation is in multiple cycles,
there is new result with every
cycle

Fig. 8

https://docs.xilinx.com/v/u/en-US/ug998-vivado-intro-fpga-design-hls

TA
C

-H
EP

 2
02

3

Dataflow
• Similar to pipelining but parallelism at coarse-grain level

• Parallel execution of functions within a single program
• By evaluating the interactions between different functions of a program

based on their inputs and outputs

• Case-1: Independent (simplest)
• Separate resources for different functions and run the blocks independently

• Case-2: Dependent (complex)
• One function provides result for another function (consumer-producer

scenario)

March 22, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 22

TA
C

-H
EP

 2
02

3

Dataflow
Consumer-producer scenario:
• Producer creates a complete data set before the consumer can start its operation

• Parallelism by instantiating a pair of BRAM memories arranged as memory banks
ping and pong

• Each function can access only one memory bank, ping or pong, for the duration
of a function call

• Guarantees functional correctness but limits parallelism

• Consumer can start working with partial results from the producer
• Both functions are connected through the use of a FIFO memory circuit
• FIFO act as queue, provides data-level synchronization between the modules
• both hardware modules are executing during any time of functional call
• Exception: consumer module waits for some data to be available from the

producer before beginning computation (Initiation interval – II)

March 22, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 23

TA
C

-H
EP

 2
02

3

Path to firmware

March 22, 2023

https://www.xilinx.com/support/documentation/sw_manuals/xilinx2020_1/ug902-vivado-high-level-synthesis.pdf

TAC-HEP: GPU & FPGA training module - Varun Sharma 24

C/C++
algo

Constraints/
directives

Firmware block

VHDL/Verilog

High Level Synthesis (HLS)
• Compile from C/C++ to VHDL/Verilog
• Pre-processor directives and constraints used

to optimize the design

Hardware Description Languages
• VHDL/Verilog
• Programming languages which describe

electronic circuits

Drastic decrease in firmware development time!

Fig. 9

https://www.xilinx.com/support/documentation/sw_manuals/xilinx2020_1/ug902-vivado-high-level-synthesis.pdf

TA
C

-H
EP

 2
02

3

Questions?

March 22, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 25

TA
C

-H
EP

 2
02

3

Additional material

March 22, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 26

TA
C

-H
EP

 2
02

3

Jargons

March 22, 2023

● ICs - Integrated chip: assembly of hundreds of millions of transistors on a minor chip
● PCB: Printed Circuit Board
● LUT - Look Up Table aka ‘logic’ - generic functions on small bitwidth inputs. Combine many to build the algorithm
● FF - Flip Flops - control the flow of data with the clock pulse. Used to build the pipeline and achieve high throughput
● DSP - Digital Signal Processor - performs multiplication and other arithmetic in the FPGA
● BRAM - Block RAM - hardened RAM resource. More efficient memories than using LUTs for more than a few elements
● PCIe or PCI-E - Peripheral Component Interconnect Express: is a serial expansion bus standard for connecting a computer to

one or more peripheral devices
● InfiniBand is a computer networking communications standard used in high-performance computing that features very high

throughput and very low latency
● HLS - High Level Synthesis - compiler for C, C++, SystemC into FPGA IP cores
● HDL - Hardware Description Language - low level language for describing circuits
● RTL - Register Transfer Level - the very low level description of the function and connection of logic gates
● FIFO – First In First Out memory
● Latency - time between starting processing and receiving the result

○ Measured in clock cycles or seconds
● II - Initiation Interval - time from accepting first input to accepting next input

TAC-HEP: GPU & FPGA training module - Varun Sharma 27

