
Traineeships in Advanced Computing
for High Energy Physics (TAC-HEP)

Varun Sharma
University of Wisconsin – Madison, USA

GPU & FPGA module training: Part-2

Week-3: Hands-on with vivado_hls, Intro to Pragmas

Lecture-6: April 5th 2023

TA
C

-H
EP

 2
02

3

So Far…

April 5, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 2

• FPGA and its architecture
• Registor/Flip-Flops, LUTs/Logic Cells, DSP, BRAMs
• Clock Frequency, Latency
• Extracting control logic & Implementing I/O ports

• Parallelism in FPGA
• Scheduling, Pipelining, DataFlow

• Vivado HLS
• Introduction, Setup, Hands-on for GUI/CLI

Today:
• Continue with hands-on
• Introduction to Pragmas

TA
C

-H
EP

 2
02

3

Reminder: Steps to follow
• Step-1: Creating a New Project/Opening an existing project

• Step-2: Validating the C-source code

• Step-3: High Level Synthesis

• Step-4: RTL Verification

• Step-5: IP Creation

April 5, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 3

TA
C

-H
EP

 2
02

3

Ex: lec6Ex1

April 5, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 4

Eg.: lec6Ex1

TA
C

-H
EP

 2
02

3

Ex: lec6Ex1 -Synthesis Result

April 5, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 5

Eg.: lec6Ex1

TA
C

-H
EP

 2
02

3

Ex: lec6Ex1 -Synthesis Result

April 5, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 6

Eg.: lec6Ex1

TA
C

-H
EP

 2
02

3

Ex: lec6Ex1 -Synthesis Result

April 5, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 7

Eg.: lec6Ex1

TA
C

-H
EP

 2
02

3

Ex: lec6Ex2

April 5, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 8

Eg.: lec6Ex2

TA
C

-H
EP

 2
02

3

Ex: lec6Ex2 -Synthesis Result

April 5, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 9

Eg.: lec6Ex2

TA
C

-H
EP

 2
02

3

Ex: lec6Ex2 -Synthesis Result

April 5, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 10

Eg.: lec6Ex2

TA
C

-H
EP

 2
02

3

Analysis Perspective

April 5, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 11

TA
C

-H
EP

 2
02

3

HLS Pragmas

April 5, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 12

TA
C

-H
EP

 2
02

3

Pragma HLS array_map

• Combines multiple smaller arrays into a single large array to help reduce block RAM resources
• This larger array can then be targeted to a single larger memory (RAM or FIFO) resource

• Each array is mapped into a block RAM or UltraRAM, when supported by the device
• The basic block RAM unit provided in an FPGA is 18K
• If many small arrays do not use the full 18K, a better use of the block RAM resources is to

map many small arrays into a single larger array

• The ARRAY_MAP pragma supports two ways of mapping small arrays into a larger one:
• Horizontal mapping: this corresponds to creating a new array by concatenating the original

arrays
• Physically, this gets implemented as a single array with more elements.

• Vertical mapping: this corresponds to creating a new array by concatenating the original
words in the array
• Physically, this gets implemented as a single array with a larger bit-width.

April 5, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 13

#pragma HLS array_map variable=<name> instance=<instance> <mode> offset=<int>

TA
C

-H
EP

 2
02

3

Pragma HLS array_map

April 5, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 14

#pragma HLS array_map variable=<name> instance=<instance> <mode> offset=<int>

variable=<name>: A required argument that specifies the array variable to be mapped
into the new target array <instance>

instance=<instance>: Specifies the name of the new array to merge arrays into.
• <mode>: Optionally specifies the array map as being either horizontal or vertical.

offset=<int>: Applies to horizontal type array mapping only. The offset specifies an integer
value offset to apply before mapping the array into the new array <instance>. For
example:

• Element 0 of the array variable maps to element <int> of the new target
• Other elements map to <int+1>, <int+2>... of the new target.

TA
C

-H
EP

 2
02

3

Ex: Pragma HLS array_map

April 5, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 15

Arrays array1 and array2 in function foo are mapped into a single array, specified
as array3 in the following example:

TA
C

-H
EP

 2
02

3

Ex: Pragma HLS array_map

April 5, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 16

This example provides a horizontal mapping of array A[10] and array B[15] in function foo into a single
new array AB[25].
• Element AB[0] will be the same as A[0]
• Element AB[10] will be the same as B[0] because no offset= option is specified.
• The bit-width of array AB[25] will be the maximum bit-width of either A[10] or B[15]

The following example performs a vertical concatenation of arrays C and D into a new array CD, with
the bit-width of C and D combined

The number of elements in CD is the maximum of the original arrays, C or D:

TA
C

-H
EP

 2
02

3

Pragma HLS array_partition
• Partitions an array into smaller arrays or individual elements and provides

the following:
• Results in RTL with multiple small memories or multiple registers instead of

one large memory
• Effectively increases the amount of read and write ports for the storage
• Potentially improves the throughput of the design
• Requires more memory instances or registers

April 5, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 17

#pragma HLS array_partition variable=<name> <type> factor=<int> dim=<int>

Syntax:
Place the pragma in the C source within the boundaries of the function where the array
variable is defined

TA
C

-H
EP

 2
02

3

Pragma HLS array_partition

April 5, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 18

variable=<name>: A required argument that specifies the array variable to be partitioned.
<type>: Optionally specifies the partition type (default type is complete)
• cyclic: Cyclic partitioning creates smaller arrays by interleaving elements from the original array

• Partitioned cyclically by putting one element into each new array before coming back to the
first array to repeat the cycle until the array is fully partitioned. For example, if factor=3 is used:
• Element 0 is assigned to the first new array
• Element 1 is assigned to the second new array.
• Element 2 is assigned to the third new array.
• Element 3 is assigned to the first new array again.

• block: Block partitioning creates smaller arrays from consecutive blocks of the original array. This
effectively splits the array into N equal blocks, where N is the integer defined by
the factor= argument

• complete: Complete partitioning decomposes the array into individual elements
• For a 1-D array, this corresponds to resolving a memory into individual registers (default <type>)

#pragma HLS array_partition variable=<name> <type> factor=<int> dim=<int>

TA
C

-H
EP

 2
02

3

Pragma HLS array_partition

April 5, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 19

#pragma HLS array_partition variable=<name> <type> factor=<int> dim=<int>

factor=<int>: Specifies the number of smaller arrays that are to be created

NOTE: For complete type partitioning, the factor is not specified. Must for block and
cyclic partitioning

dim=<int>: Specifies which dimension of a multi-dimensional array to partition.
Specified as an integer from 0 to N, for an array with N dimensions:

• If a value of 0 is used, all dimensions of a multi-dimensional array are
partitioned with the specified type and factor options.

• Any non-zero value partitions only the specified dimension. For example, if a
value 1 is used, only the first dimension is partitioned.

TA
C

-H
EP

 2
02

3

Ex: Pragma HLS array_partition

• This example partitions the 13 element array, AB[13], into four arrays using block
partitioning:
• Because four is not an integer factor of 13:
• Three of the new arrays have three elements each,
• One array has four elements (AB[9:12])

April 5, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 20

#pragma HLS array_partition variable=AB block factor=4

#pragma HLS array_partition variable=AB block factor=2 dim=2

• This example partitions dimension two of the two-dimensional array, AB[6][4] into
two new arrays of dimension [6][2]:

TA
C

-H
EP

 2
02

3

Pragma HLS unroll

April 5, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 21

• Unroll loops to create multiple independent operations rather than a single collection of
operations

• UNROLL pragma transforms loops by creating multiples copies of the loop body in the RTL
design, which allows some or all loop iterations to occur in parallel

• Loops in the C/C++ functions are kept rolled by default
• When loops are rolled, synthesis creates the logic for one iteration of the loop, and

the RTL design executes this logic for each iteration of the loop in sequence

• UNROLL pragma allows the loop to be fully or partially unrolled
• Fully unrolling the loop creates a copy of the loop body in the RTL for each loop

iteration, so the entire loop can be run concurrently
• Partially unrolling a loop lets you specify a factor N

TA
C

-H
EP

 2
02

3

Pragma HLS unroll

April 5, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 22

factor=<N>: Specifies a non-zero integer indicating that partial unrolling is requested.
• If factor= is not specified, the loop is fully unrolled.

region: An optional keyword that unrolls all loops within the body (region) of the specified loop,
without unrolling the enclosing loop itself.

skip_exit_check: An optional keyword that applies only if partial unrolling is specified with factor=
• Fixed (known) bounds: No exit condition check is performed if the iteration count is a multiple of

the factor. If the iteration count is not an integer multiple of the factor, the tool:
• Prevents unrolling.
• Issues a warning that the exit check must be performed to proceed.

• Variable (unknown) bounds: The exit condition check is removed as requested. You must ensure
that:
• The variable bounds is an integer multiple of the specified unroll factor.
• No exit check is in fact require

#pragma HLS unroll factor=<N> region skip_exit_check

TA
C

-H
EP

 2
02

3

Ex: Pragma HLS unroll

April 5, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 23

#pragma HLS unroll factor=<N> region skip_exit_check

The following example fully unrolls loop_1 in function foo

Place the pragma in the body of loop_1 as shown:

This example specifies an unroll factor of 4 to partially
unroll loop_2 of function foo, and removes the exit
check:

TA
C

-H
EP

 2
02

3

Ex: Pragma HLS unroll

April 5, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 24

The following example fully unrolls all loops inside loop_1 in function foo, but not loop_1 itself due
to the presence of the region keyword:

TA
C

-H
EP

 2
02

3

Ex: lec6Ex2a

April 5, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 25

TA
C

-H
EP

 2
02

3

Exercise files
• Git clone: https://github.com/varuns23/TAC-HEP-FPGA-HLS.git

April 5, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 26

https://github.com/varuns23/TAC-HEP-FPGA-HLS.git

TA
C

-H
EP

 2
02

3

Assignment

April 5, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 27

• Use target device: xc7k160tfbg484-2
• Clock period of 10ns

1. Execute the code (lec5Ex2.tcl) using CLI (slide-25) and compare the
results with GUI results for C-Simulation, C-Synthesis

2. Vary following parameters for two cases: high and very high values and
compare with 1 for both CLI and GUI

• Variable: “samples”
• Variable: “N”

3. Run example lec3Ex2a

TA
C

-H
EP

 2
02

3

Assignment submission

April 5, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 28

• Where to submit:
• https://pages.hep.wisc.edu/~varuns/assignments/TAC-HEP/

• Use your login machine credentials

• Submit one file per week
• Week-2 & 3 can be merged together

• Try to submit by next Tuesday

https://pages.hep.wisc.edu/~varuns/assignments/TAC-HEP/

TA
C

-H
EP

 2
02

3

Questions?

April 5, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 29

TA
C

-H
EP

 2
02

3

Additional material

April 5, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 30

TA
C

-H
EP

 2
02

3

Correct Time

From 03.28.2023 onwards

• Tuesdays: 9:00-10:00 CT / 10:00-11:00 ET / 16:00-17:00 CET
• Wednesday: 11:00-12:00 CT / 12:00-13:00 ET / 18:00-19:00 CET

April 5, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 31

TA
C

-H
EP

 2
02

3

Jargons

April 5, 2023

● ICs - Integrated chip: assembly of hundreds of millions of transistors on a minor chip
● PCB: Printed Circuit Board
● LUT - Look Up Table aka ‘logic’ - generic functions on small bitwidth inputs. Combine many to build the algorithm
● FF - Flip Flops - control the flow of data with the clock pulse. Used to build the pipeline and achieve high throughput
● DSP - Digital Signal Processor - performs multiplication and other arithmetic in the FPGA
● BRAM - Block RAM - hardened RAM resource. More efficient memories than using LUTs for more than a few elements
● PCIe or PCI-E - Peripheral Component Interconnect Express: is a serial expansion bus standard for connecting a computer to

one or more peripheral devices
● InfiniBand is a computer networking communications standard used in high-performance computing that features very high

throughput and very low latency
● HLS - High Level Synthesis - compiler for C, C++, SystemC into FPGA IP cores
● DRCs - Design Rule Checks
● HDL - Hardware Description Language - low level language for describing circuits
● RTL - Register Transfer Level - the very low level description of the function and connection of logic gates
● FIFO – First In First Out memory
● Latency - time between starting processing and receiving the result

○ Measured in clock cycles or seconds
● II - Initiation Interval - time from accepting first input to accepting next input

TAC-HEP: GPU & FPGA training module - Varun Sharma 32

