
Traineeships in Advanced Computing
for High Energy Physics (TAC-HEP)

Varun Sharma
University of Wisconsin – Madison, USA

GPU & FPGA module training: Part-2

Week-5: Vivado HLS: More pragmas and Do’s & Don’ts

Lecture-9: April 18th 2023

TA
C

-H
EP

 2
02

3

So Far…

April 18, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 2

• FPGA and its architecture
• Registor/Flip-Flops, LUTs/Logic Cells, DSP, BRAMs
• Clock Frequency, Latency
• Extracting control logic & Implementing I/O ports

• Parallelism in FPGA
• Scheduling, Pipelining, DataFlow

• Vivado HLS
• Introduction, Setup, Hands-on for GUI/CLI, Introduction to Pragmas
• Different Pragmas and their effects on performance

Today:
• Some more pragmas
• Good practices to write HLS codes
• Does & Don’ts

TA
C

-H
EP

 2
02

3

HLS Pragmas

April 18, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 3

TA
C

-H
EP

 2
02

3

Pragmas by type

April 18, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 4

Type Attributes

Kernel Optimization
pragma HLS allocation
pragma HLS expression_balance
pragma HLS latency

pragma HLS reset
pragma HLS resource
pragma HLS stable

Function Inlining pragma HLS inline
pragma HLS function_instantiate

Interface Synthesis pragma HLS interface

Task-level Pipeline pragma HLS dataflow
pragma HLS stream

Pipeline pragma HLS pipeline
pragma HLS occurrence

Loop Unrolling pragma HLS unroll
pragma HLS dependence

Loop Optimization pragma HLS loop_flatten
pragma HLS loop_merge pragma HLS loop_tripcount

Array Optimization pragma HLS array_map
pragma HLS array_partition

pragma HLS array_reshape

Structure Packing pragma HLS data_pack

https://www.xilinx.com/htmldocs/xilinx2019_1/sdaccel_doc/hls-pragmas-okr1504034364623.html
https://www.xilinx.com/htmldocs/xilinx2019_1/sdaccel_doc/hls-pragmas-okr1504034364623.html
https://www.xilinx.com/htmldocs/xilinx2019_1/sdaccel_doc/hls-pragmas-okr1504034364623.html
https://www.xilinx.com/htmldocs/xilinx2019_1/sdaccel_doc/hls-pragmas-okr1504034364623.html
https://www.xilinx.com/htmldocs/xilinx2019_1/sdaccel_doc/hls-pragmas-okr1504034364623.html
https://www.xilinx.com/htmldocs/xilinx2019_1/sdaccel_doc/hls-pragmas-okr1504034364623.html
https://www.xilinx.com/htmldocs/xilinx2019_1/sdaccel_doc/hls-pragmas-okr1504034364623.html
https://www.xilinx.com/htmldocs/xilinx2019_1/sdaccel_doc/hls-pragmas-okr1504034364623.html
https://www.xilinx.com/htmldocs/xilinx2019_1/sdaccel_doc/hls-pragmas-okr1504034364623.html
https://www.xilinx.com/htmldocs/xilinx2019_1/sdaccel_doc/hls-pragmas-okr1504034364623.html
https://www.xilinx.com/htmldocs/xilinx2019_1/sdaccel_doc/hls-pragmas-okr1504034364623.html
https://www.xilinx.com/htmldocs/xilinx2019_1/sdaccel_doc/hls-pragmas-okr1504034364623.html
https://www.xilinx.com/htmldocs/xilinx2019_1/sdaccel_doc/hls-pragmas-okr1504034364623.html
https://www.xilinx.com/htmldocs/xilinx2019_1/sdaccel_doc/hls-pragmas-okr1504034364623.html
https://www.xilinx.com/htmldocs/xilinx2019_1/sdaccel_doc/hls-pragmas-okr1504034364623.html
https://www.xilinx.com/htmldocs/xilinx2019_1/sdaccel_doc/hls-pragmas-okr1504034364623.html
https://www.xilinx.com/htmldocs/xilinx2019_1/sdaccel_doc/hls-pragmas-okr1504034364623.html
https://www.xilinx.com/htmldocs/xilinx2019_1/sdaccel_doc/hls-pragmas-okr1504034364623.html
https://www.xilinx.com/htmldocs/xilinx2019_1/sdaccel_doc/hls-pragmas-okr1504034364623.html
https://www.xilinx.com/htmldocs/xilinx2019_1/sdaccel_doc/hls-pragmas-okr1504034364623.html
https://www.xilinx.com/htmldocs/xilinx2019_1/sdaccel_doc/hls-pragmas-okr1504034364623.html
https://www.xilinx.com/htmldocs/xilinx2019_1/sdaccel_doc/hls-pragmas-okr1504034364623.html

TA
C

-H
EP

 2
02

3

HLS Loop_flatten

• Allow nested loops to be flattened into a single loop hierarchy with improved
latency

• In RTL implementation, takes on clock-cycle to move from outer loop to an inner
loop & vice-versa

• Flattening nested loops allow them to be optimized as a single loop
• Saves clock cycles
• Allows for greater optimization of the loop body logic

• LOOP_FLATTEN pragma is applied to the loop body of inner-most
loop in the hierarchy
• Only perfect & semi-perfect loops can be flattened

April 18, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 5

#pragma HLS loop_flatten off

TA
C

-H
EP

 2
02

3

Different for-loops
• Perfect loop nest:

• Only innermost loop body has content
• No logic between loop statements
• All loop bounds are constant

• Semi-perfect loop nest:
• Only innermost loop body has content
• No logic between loop statements
• Outermost loop bound can be a variable

• Imperfect loop nest:
• Loop body is not exclusively inside the inner loop
• Try restructure or UNROLL

April 18, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 6

TA
C

-H
EP

 2
02

3

Examples

April 18, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 7

#pragma HLS loop_flatten

Ex: lec9Ex3.c Ex: lec9Ex4.c

Perfect for loop Imperfect for loop

TA
C

-H
EP

 2
02

3

Perfect loop – Performance Estimates

April 18, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 8

Without Loop_flatten pragma With Loop_flatten pragma

#pragma HLS loop_flatten Ex: lec9Ex3.c

TA
C

-H
EP

 2
02

3

Perfect loop – Resource Utilization

April 18, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 9

Without Loop_flatten pragma With Loop_flatten pragma

#pragma HLS loop_flatten Ex: lec9Ex3.c

TA
C

-H
EP

 2
02

3

Perfect loop – Analysis Perspective

April 18, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 10

Without Loop_flatten pragma With Loop_flatten pragma

#pragma HLS loop_flatten Ex: lec9Ex3.c

TA
C

-H
EP

 2
02

3

Imperfect loop

April 18, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 11

Without Loop_flatten pragma With Loop_flatten pragma

#pragma HLS loop_flatten Ex: lec9Ex4.c

TA
C

-H
EP

 2
02

3

Imperfect loop

April 18, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 12

Without Loop_flatten pragma With Loop_flatten pragma

#pragma HLS loop_flatten Ex: lec9Ex4.c

TA
C

-H
EP

 2
02

3

HLS Loop_merge

April 18, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 13

#pragma HLS loop_merge force

• Merge consecutive loops into a single loop to reduce overall latency, increase
sharing, and improve logic optimization

• Merging loops:
• Reduces the number of clock cycles required in the RTL to transition between

the loop-body implementations
• Allows the loops be implemented in parallel (if possible)

• force: optional keyword to force loops to be merged even when HLS tool issues a warning

TA
C

-H
EP

 2
02

3

HLS Loop_merge

April 18, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 14

#pragma HLS loop_merge force

• Some rules before thinking to merge:
• For variable loop bounds, must have same value (# of iterations)
• For constant loop bounds, the max. constant value is used as the bound of

the merged loop

• Loops with both variable bounds and constant bounds CANNOT be merged.

• The code between loops to be merged cannot have side effects
• Multiple execution of this code should generate the same results (a=b is

allowed, a=a+1 is not).

• Loops cannot be merged when they contain FIFO reads
• Reads from a FIFO or FIFO interface must always be in sequence

TA
C

-H
EP

 2
02

3

HLS Coding Styles

April 18, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 15

TA
C

-H
EP

 2
02

3

Un-supported C contructs
o HLS supports a wide range of C-language

✗Some constructs are NOT Synthesizable
• Can result in errors further down the design flow

üTo be synthesized successfully:
• C-function must contain entire functionality of the design
• No functionality can be performed by system calls to the Operating System
• C-construct must be of a bounded size
• Implementation must be un-ambiguous

April 18, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 16

TA
C

-H
EP

 2
02

3

System Calls

• System calls can’t be synthesized as they are performed upon Operating System

• HLS ignores common system calls such as:
• printf(), fprintf(stdout,), getc(), time(), sleep() etc..

• Vivado HLS defines macro __SYNTHESIS__ when synthesis is performed
• Only use macro in the code to be synthesized and not in the test bench

• Example on next slide: macro __SYNTHESIS__ is used to ensure the non-
synthesizable files writes are ignored during synthesis

April 18, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 17

FORBIDDEN

TA
C

-H
EP

 2
02

3

System Calls

April 18, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 18

Test bench
Code to be synthesized

Ex: lec9Ex1.c

TA
C

-H
EP

 2
02

3

System Calls

April 18, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 19

Ex: lec9Ex1.cc

TA
C

-H
EP

 2
02

3

Dynamic Memory Usage

• Memory allocation system calls MUST be removed from the design code before
synthesis

• System calls that manages memory allocations, such as:
• malloc(), alloc(), free()
• Uses resources from OS memory

• Dynamic memory operations must be transformed into equivalent bounded
representations

• Example on next slide: how a design using malloc() can be transformed

April 18, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 20

FORBIDDEN

TA
C

-H
EP

 2
02

3

Dynamic Memory Usage

April 18, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 21

Ex: lec9Ex2.c

Allocates a region in memory to store 64
values of 32 bits each

Although this coding example clearly states
a constant memory allocation

HLS code does not analyze the contents of
the malloc statement

TA
C

-H
EP

 2
02

3

Dynamic Memory Usage

April 18, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 22

Ex: lec9Ex2.c

TA
C

-H
EP

 2
02

3

Dynamic Memory Usage

• The design does not use __SYNTHESIS__ macro
• User-defined macro NO_SYNTH is used to select between the synthesizable and

non- synthesizable versions
• Fixed sized resources can be created & the existing pointer can simply be made

to point to the fixed sized resources
• Prevent manual recoding of the existing design

April 18, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 23

Snippet from logs

TA
C

-H
EP

 2
02

3

Dynamic Memory Usage

April 18, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 24

Assignment exercise1: See what happens if you don’t
use NO_SYNTH macro and remove alternate code

Ex: lec9Ex2.c

TA
C

-H
EP

 2
02

3

Dynamic Memory Usage
o As above example had coding changes which MAY impact the functionality of

the design, Xilinx DOES NOT recommend using the __SYNTHESIS__ macro

o Xilinx recommends that you perform the following steps:
1. Add used-defined macro __NO_SYNTH__ to code & modify
2. Enable macro __NO_SYNTH__ , execute the C-simulation, and save the results
3. Disable the macro __NO_SYNTH__ and execute the C simulation to verify that the

results are identical
4. Perform synthesis with the user-defined macro disabled

This will ensure the design functionality is retained even after synthesis

April 18, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 25

TA
C

-H
EP

 2
02

3

Dynamic Memory Usage
• Give restrictions on dynamic memory usage in C
• HLS does not support (for synthesis) C++ objects that are dynamically

created or destroyed such as
• Polymorphism, dynamic virtual function calls

April 18, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 26

Cannot be synthesized because it
creates a new function at run time

TA
C

-H
EP

 2
02

3

Pointer Limitations

April 18, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 27

• Pointers in a C/C++ program are function parameters, array handling, pointer to
pointer, and type casting

• HLS compiler supports pointer usage that can be completely analyzed at compile
time

//Not allowed

Pointer to reference a dynamically allocated region in memory

Valid coding style

• All uses of pointer pA can be analyzed & mapped back to
array A.

• As array A is created by automatic memory allocation, HLS
can fully determine the properties of A

Array access with a pointer

TA
C

-H
EP

 2
02

3

Pointer Limitations

April 18, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 28

Pointer to extrenal memory
• Another supported model for memories and pointers is in

accessing external memory

• HLS: Any pointer access on function parameters implies
either a variable or an external memory.

• External memory:any memory outside of the scope of
the compiler-generated RTL
• Memory might be located in another function in the

FPGA or in part of an off-chip memory, such as DDR

Example: Function foo is a top-level module for HLS with data_in as a parameter
• Based on the multiple pointer access on data_in, HLS infers that this function parameter is an

external memory module, which must be accessed through a bus protocol at the hardware level

TA
C

-H
EP

 2
02

3

Standard Template Libraries
• Many of the C++ Standard Template Libraries (STLs) contain function recursion

and use dynamic memory allocation

• For this reason, the STLs cannot be synthesized

• Solution: Create a local function with identical functionality that does not exhibit
these characteristics of recursion, dynamic memory allocation or the dynamic
creation and destruction of objects

April 18, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 29

**Standard data types, such as std::complex, are supported for synthesis

TA
C

-H
EP

 2
02

3

Arbitrary precision

April 18, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 30

C/C++ data types Bit-width
(unsigned) char 4
(unsigned) short 8
(unsigned) int 16
(unsigned) long 32
(unsigned) long long 64
float 32
double 64
IntN_t N=8/16/32/64

Creating hardware, it is useful to use more accurate bit-widths

For ex: a case in which the input to a filter is 4-bit and the yielded
results requires a maximum of 10-bits

short input

int output

ap_int<4> input
ap_int<10> output

TA
C

-H
EP

 2
02

3

Arbitrary precision

April 18, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 31

Using standard C data types for hardware
design results in unnecessary hardware costs.

Operations can use more LUTs and registers
than needed for the required accuracy, and
delays might even exceed the clock cycle,
requiring more cycles to compute the result

C/C++ data types Bit-width
(unsigned) char 4
(unsigned) short 8
(unsigned) int 16
(unsigned) long 32
(unsigned) long long 64
float 32
double 64
IntN_t N=8/16/32/64

TA
C

-H
EP

 2
02

3

Assignment Week-5

April 18, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 32

1. Do exercise mention on slide-24
2. A matrix multiplication using two for loops and compare

results for pragma loop_flatten & unroll
3. Write a simple program doing arithmetic operations(+, -, *, /,

%) between two variable use of arbitrary precision to
compare results between stand c/c++ data types and using
ap_(u)int<N>

TA
C

-H
EP

 2
02

3

Questions?

April 18, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 33

TA
C

-H
EP

 2
02

3

Acknowledgement

April 18, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 34

Lectures are compiled using content from Xilinx’s public
pages/examples or different user guides

TA
C

-H
EP

 2
02

3

Additional material

April 18, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 35

TA
C

-H
EP

 2
02

3

Assignment submission

April 18, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 36

• Where to submit:
• https://pages.hep.wisc.edu/~varuns/assignments/TAC-HEP/

• Use your login machine credentials

• Submit one file per week

• Try to submit by following week’s Tuesday

https://pages.hep.wisc.edu/~varuns/assignments/TAC-HEP/

TA
C

-H
EP

 2
02

3

Correct Time

From 03.28.2023 onwards

• Tuesdays: 9:00-10:00 CT / 10:00-11:00 ET / 16:00-17:00 CET
• Wednesday: 11:00-12:00 CT / 12:00-13:00 ET / 18:00-19:00 CET

April 18, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 37

TA
C

-H
EP

 2
02

3

Jargons

April 18, 2023

● ICs - Integrated chip: assembly of hundreds of millions of transistors on a minor chip
● PCB: Printed Circuit Board
● LUT - Look Up Table aka ‘logic’ - generic functions on small bitwidth inputs. Combine many to build the algorithm
● FF - Flip Flops - control the flow of data with the clock pulse. Used to build the pipeline and achieve high throughput
● DSP - Digital Signal Processor - performs multiplication and other arithmetic in the FPGA
● BRAM - Block RAM - hardened RAM resource. More efficient memories than using LUTs for more than a few elements
● PCIe or PCI-E - Peripheral Component Interconnect Express: is a serial expansion bus standard for connecting a computer to

one or more peripheral devices
● InfiniBand is a computer networking communications standard used in high-performance computing that features very high

throughput and very low latency
● HLS - High Level Synthesis - compiler for C, C++, SystemC into FPGA IP cores
● DRCs - Design Rule Checks
● HDL - Hardware Description Language - low level language for describing circuits
● RTL - Register Transfer Level - the very low level description of the function and connection of logic gates
● FIFO – First In First Out memory
● Latency - time between starting processing and receiving the result

○ Measured in clock cycles or seconds
● II - Initiation Interval - time from accepting first input to accepting next input

TAC-HEP: GPU & FPGA training module - Varun Sharma 38

TA
C

-H
EP

 2
02

3

Assignment Week-3

April 18, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 39

• Use target device: xc7k160tfbg484-2
• Clock period of 10ns

1. Execute the code (lec5Ex2.tcl) using CLI (slide-25) and compare the
results with GUI results for C-Simulation, C-Synthesis

2. Vary following parameters for two cases: high and very high values and
compare with 1 for both CLI and GUI

• Variable: “samples”
• Variable: “N”

3. Run example lec3Ex2a

TA
C

-H
EP

 2
02

3

Assignment Week-4
1. Do a matrix multiplication of two 1-dimensional arrays –

A[N]*B[N], where N > 5
a) Report synthesis results without any pragma directives
b) Add as many pragma directives possible

i. Report any conflicts (if reported in logs) between two pragmas

2. Compare the analysis perspective (Performance) for different
case shared today

3. For Array_partitioning, instead of using complete, use block
and cyclic with different factors

April 18, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 40

