
Traineeships in Advanced Computing
for High Energy Physics (TAC-HEP)

Varun Sharma
University of Wisconsin – Madison, USA

GPU & FPGA module training: Part-2

Week-5: Vivado HLS: More pragmas and HLS coding styles

Lecture-10: April 19th 2023

TA
C

-H
EP

 2
02

3

So Far…

April 19, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 2

• FPGA and its architecture
• Registor/Flip-Flops, LUTs/Logic Cells, DSP, BRAMs
• Clock Frequency, Latency
• Extracting control logic & Implementing I/O ports

• Parallelism in FPGA
• Scheduling, Pipelining, DataFlow

• Vivado HLS
• Introduction, Setup, Hands-on for GUI/CLI, Introduction to Pragmas
• Different Pragmas and their effects on performance

Today:
• More pragmas
• Some more Good practices to write HLS codes
• Does & Don’ts

TA
C

-H
EP

 2
02

3

Coding styles

April 19, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 3

TA
C

-H
EP

 2
02

3

Arbitrary precision

April 19, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 4

C/C++ data types Bit-width
(unsigned) char 4
(unsigned) short 8
(unsigned) int 16
(unsigned) long 32
(unsigned) long long 64
float 32
double 64
IntN_t N=8/16/32/64

Creating hardware, it is useful to use more accurate bit-widths

For ex: a case in which the input to a filter is 4-bit and the yielded
results requires a maximum of 10-bits

short input

int output

ap_int<4> input
ap_int<10> output

TA
C

-H
EP

 2
02

3

Arbitrary precision

April 19, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 5

Lets see with an
example how much
we can improve if we
use precise data-
types

TA
C

-H
EP

 2
02

3

Arbitrary precision

April 19, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 6

With arbitrary precisionWithout arbitrary precision

TA
C

-H
EP

 2
02

3

Arbitrary precision

April 19, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 7

With arbitrary precisionWithout arbitrary precision

TA
C

-H
EP

 2
02

3

Uninitialized/Unused Variable

• Variable out is not an issue: assigned before it is ever read.
• Issue due to variable in: used in a computation before it is assigned a

value
• Some compilers may automatically assign 0 to in at the point of

declaration
• HLS does not use this type of solution

April 19, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 8

• Any undefined behavior can be optimized out of the resulting implementation
• Reduce circuit to nothing
• Example: piece of code which is not affecting output

• Uninitialized variables are a result of a poor coding style in which the designer does not initialize
variables to 0

TA
C

-H
EP

 2
02

3

Un-used code

April 19, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 9

TA
C

-H
EP

 2
02

3

Un-used code

April 19, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 10

TA
C

-H
EP

 2
02

3

Un-used code

April 19, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 11

If any piece of code iss not connect to output, it will not be considered
in RTL design and thus no resources are needed

No change in timing, latency or resource utilization is expected

TA
C

-H
EP

 2
02

3

Un-used code

April 19, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 12

If any piece of code iss not connect to output, it will not be considered
in RTL design and thus no resources are needed

No change in timing, latency or resource utilization is expected

All pieces must be connected (closed circuit)

TA
C

-H
EP

 2
02

3

Out-of-Bounds Memory Access
• Memory accesses are expressed either as operations on an array or as operations

on an external memory through pointers

April 19, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 13

Out-of-bound memory access
• Although the result is functionally incorrect, this kind of error

does not usually result in a program crash

• Accessing an invalid address triggers a series of events that result in an irrecoverable
runtime error in the generated circuit

• HLS implementation assumes that the software algorithm was properly verified, error recovery
logic is not included in the generated FPGA implementation

To avoid such situations (out-of-bounds/uninitialized variales) it is recommended that the
tool is executed through a dynamic code checker such as valgrind or similar

TA
C

-H
EP

 2
02

3

Composite Data Types

April 19, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 14

Vivado HLS supports composite data types for synthesis:
• Struct
• Enum
• unions

TA
C

-H
EP

 2
02

3

Structs
• When structs are used as arguments to the top-level function
• Ports created by synthesis are a direct reflection of the struct members.

• Scalar members: standard scalar ports
• Arrays: memory ports

April 19, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 15

Struct is used as both:
• A pass-by-value argument (from i_val to the return of o_val)
• A pointer (*i_pt to *o_pt)

• Struct element A results in a 16-bit port
• Struct element B results in a RAM port, accessing 4 elements

There are no limitations in the size or complexity of
structs that can be synthesized by Vivado HLS

TA
C

-H
EP

 2
02

3

HLS Pragmas

April 19, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 16

TA
C

-H
EP

 2
02

3

Pragmas by type

April 19, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 17

Type Attributes

Kernel Optimization
pragma HLS allocation
pragma HLS expression_balance
pragma HLS latency

pragma HLS reset
pragma HLS resource
pragma HLS stable

Function Inlining pragma HLS inline
pragma HLS function_instantiate

Interface Synthesis pragma HLS interface

Task-level Pipeline pragma HLS dataflow
pragma HLS stream

Pipeline pragma HLS pipeline
pragma HLS occurrence

Loop Unrolling pragma HLS unroll
pragma HLS dependence

Loop Optimization pragma HLS loop_flatten
pragma HLS loop_merge pragma HLS loop_tripcount

Array Optimization pragma HLS array_map
pragma HLS array_partition

pragma HLS array_reshape

Structure Packing pragma HLS data_pack

https://www.xilinx.com/htmldocs/xilinx2019_1/sdaccel_doc/hls-pragmas-okr1504034364623.html
https://www.xilinx.com/htmldocs/xilinx2019_1/sdaccel_doc/hls-pragmas-okr1504034364623.html
https://www.xilinx.com/htmldocs/xilinx2019_1/sdaccel_doc/hls-pragmas-okr1504034364623.html
https://www.xilinx.com/htmldocs/xilinx2019_1/sdaccel_doc/hls-pragmas-okr1504034364623.html
https://www.xilinx.com/htmldocs/xilinx2019_1/sdaccel_doc/hls-pragmas-okr1504034364623.html
https://www.xilinx.com/htmldocs/xilinx2019_1/sdaccel_doc/hls-pragmas-okr1504034364623.html
https://www.xilinx.com/htmldocs/xilinx2019_1/sdaccel_doc/hls-pragmas-okr1504034364623.html
https://www.xilinx.com/htmldocs/xilinx2019_1/sdaccel_doc/hls-pragmas-okr1504034364623.html
https://www.xilinx.com/htmldocs/xilinx2019_1/sdaccel_doc/hls-pragmas-okr1504034364623.html
https://www.xilinx.com/htmldocs/xilinx2019_1/sdaccel_doc/hls-pragmas-okr1504034364623.html
https://www.xilinx.com/htmldocs/xilinx2019_1/sdaccel_doc/hls-pragmas-okr1504034364623.html
https://www.xilinx.com/htmldocs/xilinx2019_1/sdaccel_doc/hls-pragmas-okr1504034364623.html
https://www.xilinx.com/htmldocs/xilinx2019_1/sdaccel_doc/hls-pragmas-okr1504034364623.html
https://www.xilinx.com/htmldocs/xilinx2019_1/sdaccel_doc/hls-pragmas-okr1504034364623.html
https://www.xilinx.com/htmldocs/xilinx2019_1/sdaccel_doc/hls-pragmas-okr1504034364623.html
https://www.xilinx.com/htmldocs/xilinx2019_1/sdaccel_doc/hls-pragmas-okr1504034364623.html
https://www.xilinx.com/htmldocs/xilinx2019_1/sdaccel_doc/hls-pragmas-okr1504034364623.html
https://www.xilinx.com/htmldocs/xilinx2019_1/sdaccel_doc/hls-pragmas-okr1504034364623.html
https://www.xilinx.com/htmldocs/xilinx2019_1/sdaccel_doc/hls-pragmas-okr1504034364623.html
https://www.xilinx.com/htmldocs/xilinx2019_1/sdaccel_doc/hls-pragmas-okr1504034364623.html
https://www.xilinx.com/htmldocs/xilinx2019_1/sdaccel_doc/hls-pragmas-okr1504034364623.html
https://www.xilinx.com/htmldocs/xilinx2019_1/sdaccel_doc/hls-pragmas-okr1504034364623.html

TA
C

-H
EP

 2
02

3

Pragma HLS interface
• C/C++ based design: Input & outputs are performed in zero time through function

arguments

• RTL design: same I/O operations must be performed through a port in the design
interface & typically operates using a specific I/O protocol

• INTERFACE pragma specifies how RTL ports are created from the function definitions
during interface synthesis

• When top level function is synthesized: the arguments (or parameters) to the functions
are synthesized into RTL posts
• This process is called interface synthesis

• Lets try to understand more with an example

April 19, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 18

TA
C

-H
EP

 2
02

3

Interface Synthesis overview

April 19, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 19

• Two inputs n1 & n2
• A pointer sum that is read from and written to
• A function return, the value of temp

Default interface settings will
synthesize the design into a RTL
block with ports as shown:

Fig-1

https://docs.xilinx.com/v/u/2019.1-English/ug902-vivado-high-level-synthesis

TA
C

-H
EP

 2
02

3

Interface Synthesis overview
Three types of ports in the design:
• Clock & reset ports: ap_clk and ap_rst

• If the design takes more than 1 clock cycle to complete

• Block-level interface protocol:
• Added by default & control the block
• Independent to anyport-level protocol
• ap_start: Control when block can start processing data
• ap_ready: when ready to accept new input
• ap_idle: if the design is idle
• ap_done: completed operation

• Port level interface portocols: in1, in2, sum_i, sum_o, sum_o_ap_vld, and ap_return
• Final group of signals
• Created for each argument in the top-level function & the function return
• After block-level protocol has been used to start the operation of block, port level I/O

protocols are used to sequence data in and out of the block

April 19, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 20

Fig-2

https://docs.xilinx.com/v/u/2019.1-English/ug902-vivado-high-level-synthesis

TA
C

-H
EP

 2
02

3

Port-Level Interface Protocol
• By default, input pass-by-value arguments and pointers are implemented as simple wire ports with

no associated handshaking signal
• Ex: Input ports are implemented without an I/O protocol, only a data port (data is held stable until it is

read)

• By default, output pointers are implemented with an associated output valid signal (sum_o_ap_vld)
to indicate when the output data is valid
• No I/O protocol associated with the output port, it is difficult to know when to read the data
• It is always a good idea to use an I/O protocol on an output

• Function arguments that are both read from & writes to are split into separate input & output ports
• Ex: sum is implemented as input port sum_i and output port sum_o with associated I/O protocol port

sum_o_ap_vld

• Function with a return value, an output port ap_return is implemented to provide the return value

• Completion of one transaction: the block-level protocols indicate the function is complete with the
ap_done signal.
• Also indicates the data on port ap_return is valid and can be read

April 19, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 21

TA
C

-H
EP

 2
02

3

RTL Port timing

April 19, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 22

Fig-3

Fig-4

https://docs.xilinx.com/v/u/2019.1-English/ug902-vivado-high-level-synthesis
https://docs.xilinx.com/v/u/2019.1-English/ug902-vivado-high-level-synthesis

TA
C

-H
EP

 2
02

3

RTL Port timing

April 19, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 23

• Design starts: ap_start is High

• ap_idle signal goes Low indicating design is
operating

• Input data is read at any CLK after the first
cycl.

• HLS schedules when the reads occur
• ap_ready signal is asserted high when all

inputs have been read

• When output sum is calculated, the
associated output handshake (sum_o_ap_vld)
indicates that the data is valid

• When the function completes, ap_done is
asserted. This also indicates that the data on
ap_return is valid

• Port ap_idle is High indicating design is waiting
start again Fig-5

https://docs.xilinx.com/v/u/2019.1-English/ug902-vivado-high-level-synthesis

TA
C

-H
EP

 2
02

3

Interface Synthesis I/O Protocols

April 19, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 24

The type of interfaces that are created by
interface synthesis depends on the type of
C/C++ argument

D: Default interface mode for each type

I: Input arguments, which are only read

O: Output arguments, which are only written to

I/O: Input/Output arguments, which are both
read and written

Fig-6

https://docs.xilinx.com/v/u/2019.1-English/ug902-vivado-high-level-synthesis

TA
C

-H
EP

 2
02

3

Pragma HLS interface: Syntax

April 19, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 25

<mode>: Specifies the interface protocol mode for function arguments, global variables used by the
function, or the block-level control protocols
• ap_none: No protocol. The interface is a data port
• ap_stable: No protocol. The interface is a data port. The HLS tool assumes the data port is always

stable after reset, which allows internal optimizations to remove unnecessary registers
• ap_vld: Implements the data port with an associated valid port to indicate when the data is valid for

reading or writing
• ap_ack: Implements the data port with an associated acknowledge port to acknowledge that the

data was read or written
• ap_hs: Implements the data port with associated valid and acknowledge ports to provide a two-way

handshake to indicate when the data is valid for reading and writing and to acknowledge that the
data was read or written

• ap_ovld: Implements the output data port with an associated valid port to indicate when the data is
valid for reading or writing

#pragma HLS interface <mode> port=<name> bundle=<string> register \
register_mode=<mode> depth=<int> offset=<string> clock=<string> name=<string> \

num_read_outstanding=<int> num_write_outstanding=<int> max_read_burst_length=<int> \
max_write_burst_length=<int>

TA
C

-H
EP

 2
02

3

Pragma HLS interface: Syntax

April 19, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 26

#pragma HLS interface <mode> port=<name> bundle=<string> register \
register_mode=<mode> depth=<int> offset=<string> clock=<string> name=<string> \

num_read_outstanding=<int> num_write_outstanding=<int> max_read_burst_length=<int> \
max_write_burst_length=<int>

<mode>: Specifies the interface protocol mode for function arguments, global variables used by the
function, or the block-level control protocols
• ap_fifo: Implements the port with a standard FIFO interface using data I/O ports with associated

active-Low FIFO empty and full ports
• ap_bus: Implements pointer and pass-by-reference ports as a bus interface.
• ap_memory: Implements array arguments as a standard RAM interface
• axis: Implements all ports as an AXI4-Stream interface
• s_axilite: Implements all ports as an AXI4-Lite interface
• m_axi: Implements all ports as an AXI4 interface
• ap_ctrl_none: No block-level I/O protocol
• ap_ctrl_hs: Implements a set of block-level control ports to start the design operation and to indicate

when the design is idle, done, and ready for new input data
• ap_ctrl_chain: Implements a set of block-level control ports to start the design operation, continue

operation & indicate when the design is idle, done, & ready for new input data

TA
C

-H
EP

 2
02

3

Pragma HLS interface: Syntax

April 19, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 27

#pragma HLS interface <mode> port=<name> bundle=<string> register \
register_mode=<mode> depth=<int> offset=<string> clock=<string> name=<string> \

num_read_outstanding=<int> num_write_outstanding=<int> max_read_burst_length=<int> \
max_write_burst_length=<int>

port=<name>: Specifies the name of the function argument, function return, or global
variable which the INTERFACE pragma applies to

bundle=<string>: Groups function arguments into AXI interface ports

register: An optional keyword to register the signal and any relevant protocol signals,
and causes the signals to persist until at least the last cycle of the function execution.
• Ap_none, ap_ack, ap_vld, ap_ovld, ap_hs, ap_stable, axis, s_axilite

TA
C

-H
EP

 2
02

3

Pragma HLS interface: Example

April 19, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 28

Both function arguments are implemented using an AXI4-Stream interface

Turns off block-level I/O protocols, and is assigned to the
function return value

The function argument InData is specified to use the ap_vld
interface, and also indicates the input should be registered

This exposes the global variable lookup_table as a port on
the RTL design, with an ap_memory interface

TA
C

-H
EP

 2
02

3

Assignment Week-5

April 19, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 29

1. Do exercise mention on slide-24
2. A matrix multiplication using two for loops and compare

results for pragma loop_flatten & unroll
3. Write a simple program doing arithmetic operations(+, -, *, /,

%) between two variable use of arbitrary precision to
compare results between stand c/c++ data types and using
ap_(u)int<N>

4. Write a program using an array with N(=10/15/20) elements
and then restructure the code with a struct having N-data
member. Compare the results of two programs

TA
C

-H
EP

 2
02

3

Questions?

April 19, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 30

TA
C

-H
EP

 2
02

3

Acknowledgement

April 19, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 31

Lectures are compiled using content from Xilinx’s public
pages/examples or different user guides

TA
C

-H
EP

 2
02

3

Additional material

April 19, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 32

TA
C

-H
EP

 2
02

3

Assignment submission

April 19, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 33

• Where to submit:
• https://pages.hep.wisc.edu/~varuns/assignments/TAC-HEP/

• Use your login machine credentials

• Submit one file per week

• Try to submit by following week’s Tuesday

https://pages.hep.wisc.edu/~varuns/assignments/TAC-HEP/

TA
C

-H
EP

 2
02

3

Correct Time

From 03.28.2023 onwards

• Tuesdays: 9:00-10:00 CT / 10:00-11:00 ET / 16:00-17:00 CET
• Wednesday: 11:00-12:00 CT / 12:00-13:00 ET / 18:00-19:00 CET

April 19, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 34

TA
C

-H
EP

 2
02

3

Jargons

April 19, 2023

● ICs - Integrated chip: assembly of hundreds of millions of transistors on a minor chip
● PCB: Printed Circuit Board
● LUT - Look Up Table aka ‘logic’ - generic functions on small bitwidth inputs. Combine many to build the algorithm
● FF - Flip Flops - control the flow of data with the clock pulse. Used to build the pipeline and achieve high throughput
● DSP - Digital Signal Processor - performs multiplication and other arithmetic in the FPGA
● BRAM - Block RAM - hardened RAM resource. More efficient memories than using LUTs for more than a few elements
● PCIe or PCI-E - Peripheral Component Interconnect Express: is a serial expansion bus standard for connecting a computer to

one or more peripheral devices
● InfiniBand is a computer networking communications standard used in high-performance computing that features very high

throughput and very low latency
● HLS - High Level Synthesis - compiler for C, C++, SystemC into FPGA IP cores
● DRCs - Design Rule Checks
● HDL - Hardware Description Language - low level language for describing circuits
● RTL - Register Transfer Level - the very low level description of the function and connection of logic gates
● FIFO – First In First Out memory
● Latency - time between starting processing and receiving the result

○ Measured in clock cycles or seconds
● II - Initiation Interval - time from accepting first input to accepting next input

TAC-HEP: GPU & FPGA training module - Varun Sharma 35

TA
C

-H
EP

 2
02

3

Assignment Week-3

April 19, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 36

• Use target device: xc7k160tfbg484-2
• Clock period of 10ns

1. Execute the code (lec5Ex2.tcl) using CLI (slide-25) and compare the
results with GUI results for C-Simulation, C-Synthesis

2. Vary following parameters for two cases: high and very high values and
compare with 1 for both CLI and GUI

• Variable: “samples”
• Variable: “N”

3. Run example lec3Ex2a

TA
C

-H
EP

 2
02

3

Assignment Week-4
1. Do a matrix multiplication of two 1-dimensional arrays –

A[N]*B[N], where N > 5
a) Report synthesis results without any pragma directives
b) Add as many pragma directives possible

i. Report any conflicts (if reported in logs) between two pragmas

2. Compare the analysis perspective (Performance) for different
case shared today

3. For Array_partitioning, instead of using complete, use block
and cyclic with different factors

April 19, 2023TAC-HEP: GPU & FPGA training module - Varun Sharma 37

