Traineeships in Advanced Computing for High Energy Physics (TAC-HEP)

GPU & FPGA module training: Part-2

Week-6: Project: Re-designing RCT

Lecture-12: April 26th 2023

So Far...

- FPGA and its architecture
 - Registor/Flip-Flops, LUTs/Logic Cells, DSP, BRAMs
 - Clock Frequency, Latency
 - Extracting control logic & Implementing I/O ports
- Parallelism in FPGA
 - Scheduling, Pipelining, DataFlow
- Vivado HLS
 - Introduction, Setup, Hands-on for GUI/CLI, Introduction to Pragmas
 - Different Pragmas and their effects on performance
 - Practices to follow while writing HLS code do's & don'ts
- LHC and CMS Experiment: Level-1 Trigger System

Today:

More on Project:

APx Firmware Shell

- Encoding/Decoding
- Current Protocol
 - 67b65b
 - 64b is data
 - 2 or 3b are control signals (Start, resets, debugging errors, etc ...)

Regional Calorimeter Trigger

 $12.5 \mu s$

Phase-2 Level-1 Trigger

Phase-2 Calorimeter Level-1 Trigger

INPUTS:

- ECAL crystals
- HCAL towers

Barrel Calorimeter Segmentation

Barrel Calorimeter Segmentation

Barrel Calorimeter Segmentation

Full barrel Calorimeter: 24 RCT regions/cards

Project: Write & Synthesis an algorithm for single re-designed RCT

RCT Algorithm

- Take energy input from Calorimeter
- Cluster ECAL energy for each tower
 - Keep the position (eta, phi) of the seed (highest energetic) crystal
- Add HCAL tower energy to clustered tower
- Keep unclustered for respective tower
- Stitch clusters on boundary
- Sort highest 12 clusters and send as output
 - Cluster ET
 - Position of towers and corresponding seed crystal within tower
 - Unclustered Energy

Single RCT

Physics bandwidth vs Algo Clock @ 25G

LHC BC Clock [MHz]	40.08
Word Bit Size	66
Line Rate [Gbps]	25.78125
Max Theoretical Words/Bx	9.74613

Bx Frame Length (TM interval)	1	1	1
Words/Frame	7	8	9
Equiv. Words/Bx	7.00	8.00	9.00
Equiv. Bits/Bx	448	512	576
Data Rate [Gbps]	18.52	21.16	23.81
Filler Rate [Gbps]	7.26	4.62	1.97
Average Filler Words/Bx	2.75	1.75	0.75
Average Filler Words/Orbit	9787.22	6223.22	2659.22
Average Filler Words/Frame	2.75	1.75	0.75
Payload Bits/Frame	448	512	576
Algo Clock @ 64b i/f[MHz]	280.56	320.64	360.72

Algorithm

1. Input per tower

- ECAL: 25 crystal energies
 - Each crystal 16b, total: 400b
- HCAL: tower energy
 - Each tower: 16b

1 - ECAL crystals = 16b	10 ET + 5 timing + 1 Spike
1 - HCAL towers = 16b	10 ET + 6 feature bits

- Total input: 416b (ECAL + HCAL)
- 1 link can have 576 bits
- Lets assume 1 link carries 1 tower worth of information (416 b)
- We need total of 102 input links

2. Cluster these energies

Clustering energies in ECAL

 $2\eta \times 5\varphi$ cEta:4, cPhi:4

 $2\eta \times 5\varphi$ cEta:0, cPhi:1

 $2\eta \times 5\varphi$ cEta:4, cPhi:0

 $3\eta \times 5\varphi$ cEta:2, cPhi:2

Algorithm

1. Input per tower

- ECAL: 25 crystal energies
 - Each crystal 16b, total: 400b
- HCAL: tower energy
 - Each tower: 16b

1 - ECAL crystals = 16b	10 ET + 5 timing + 1 Spike
1 - HCAL towers = 16b	10 ET + 6 feature bits

- Total input: 416b (ECAL + HCAL)
- 1 link can have 576 bits
- Lets assume 1 link carries 1 tower worth of information (416 b)
- We need total of 102 input links

2. Cluster these energies

Make clusters for each of these towers

Algorithm

- 1. Input per tower
- 2. Cluster ECAL energies for each tower
 - Divide the RCT card further to make life simple

Divide & Rule

Case-1

1 RCT region: $17\eta \times 6\varphi$

Case-2

1 RCT region: $17\eta \times 6\varphi$

- 4 sub-regions:
- 3: $5\eta \times 6\varphi + 1$: $2\eta \times 6\varphi$

Case-3

1 RCT region: $17\eta \times 6\varphi$

- 5 sub-regions:
- 4: $4\eta \times 6\varphi + 1$: $1\eta \times 6\varphi$

Case-4

1 RCT region: $17\eta \times 6\varphi$

- 6 sub-regions:
- 5: $3\eta \times 6\varphi + 1$: $2\eta \times 6\varphi$

Choose wisely

- Case-1
 - 102 cluster
- Case-2
 - 30 or 12 cluster per sub-region
- Case-3
 - 24 or 6 cluster per sub-region
- Case-4
 - 18 or 12 cluster per sub-region

Algorithm

- 1. Input per tower
- 2. Cluster ECAL energies for each tower
 - Divide the RCT card further to make life simple
- 3. Stitch together the clusters for neighbouring towers and add HCAL energies for respective towers

Stitching

Add energies if seed crystal are neighbor for neighboring towers

Choose wisely

- Case-1
 - 102 cluster
 - Send 12 output tower
- Case-2
 - 30 or 12 cluster per sub-region
 - Send out 7 towers per sub-region (28 total towers)
- Case-3
 - 24 or 6 cluster per sub-region
 - Send out 6 towers per sub-region (30 total towers)

- Case-4
 - 18 or 12 cluster per sub-region
 - Send out 5 towers per sub-region (30 total towers)

Algorithm

- 1. Input per tower
- 2. Cluster ECAL energies for each tower
 - Divide the RCT card further to make life simple
- 3. Stitch together the clusters for neighbouring towers
- 4. Sort the final list of towers

Sorting

Bitonic Sorter

- Comparison-based sorting algorithm that can run in parallel
- Converts random sequence of numbers into a bitonic sequence
 - One that monotonically increases, then decreases

Fig: Bitonic sort with 16 elements

Algorithm

- o Inputs: random set of $2n = 2^k$ (k is +ve integer) numbers
 - Every pair of elements is bitonic
- Bitonic sequences of size-2 are merged to create ordered lists of size 2
 - At the end of this stage of merging, we have N/4 bitonic sequence of size 4
- o Bitonic sequence of size-4 are merged into sorted sequence of size 4, leading to N/8 bitonic sequence of size 8 and so on...
- \circ Given an unordered sequence of 2n, we have $log_2 2n$ stages

Bitonic Sorter

OBitonic sort is a classic parallel algorithm for sorting & thus for FPGAs

 \circ No. of comparisons: $O(n\log^2(n))$

- OSuitable for hardware implementation:
 - Parallel implementation
 - Compare elements in a predefined sequence & doesn't depend on data
 - Only be done for elements: 2ⁿ

An example

3	3		3	2		2	2	2
9	9		2	3		3	3	3
2	7		7	7		5	5	4
7	2	+	9 *	9		4	4	5
5	5	+	8	8	+	8	7	6
6	6	↑	6	6	+	6	6	7
4	8		5	5	1	7 +	8	8
8	4		4	4	+	9	9	9

Ready to use code

https://github.com/varuns23/TAC-HEP-FPGA-HLS/tree/main/week6/BitonicSorter

```
1 #include "bitonicSort16.h"
    //Main CAE block (compare and exchange)
    GreaterSmaller AscendDescend(const din_t &x, const din_t &y){
    #pragma HLS PIPELINE II=9
    #pragma HLS INLINE
        GreaterSmaller s;
        s.greater = (x > y) ? x : y;
10
        s.smaller = (x > y) ? y : x;
11
12
        return s;
13
14
    void FourinSmallFir(const din_t &x0, const din_t &x1, const din_t &x2, const din_t &x3,
16
                                           din t &y0, din t &y1, din t &y2, din t &y3){
17
       #pragma HLS PIPELINE II=9
18
       #pragma HLS INLINE
19
        GreaterSmaller res;
20
            res = AscendDescend(x0, x2);
21
            y0 = res.smaller; y2 = res.greater;
22
23
            res = AscendDescend(x1, x3);
24
            y1 = res.smaller; y3 = res.greater;
25
26
    void FourinGreatFir(const din_t &x0, const din_t &x1, const din_t &x2, const din_t &x3,
28
                                           din_t &y0, din_t &y1, din_t &y2, din_t &y3){
29
       #pragma HLS PIPELINE II=9
30
       #pragma HLS INLINE
31
        GreaterSmaller res;
32
            res = AscendDescend(x0, x2);
33
            y0 = res.greater; y2 = res.smaller;
34
35
            res = AscendDescend(x1, x3);
36
            y1 = res.greater; y3 = res.smaller;
37
              https://github.com/varuns23/TAC-HEP-FPGA-HLS/blob/main/week6/BitonicSorter/sort16/bitonicSort16.cpp
```


Algorithm

- 1. Input per tower
- 2. Cluster ECAL energies for each tower
 - Divide the RCT card further to make life simple
- 3. Stitch together the clusters for neighbouring towers
- 4. Sort the final list
- 5. Send just 12 towers per RCT region

Output

- 12 towers
- Information per tower
 - Clustered energy (32b)
 - Unclustered energy (32b)
 - Seed crystal position (cEta, cPhi)
 - Tower position (tEta, tPhi)
 - HoE (Ratio of HCAL/ECAL energies)

Contrainsts to use

- Target Clock Period
 - 2.7778ns
- Uncertainty
 - 30%
- Target Device
 - xcvu9p-flgc2104-1-e

Some functions to refer from

https://github.com/varuns23/TAC-HEP-FPGA-HLS/tree/main/week6

```
17
    uint16_t getPeakBinOf5(uint16_t et[NCrystalsPerEtaPhi], uint16_t etSum);
18
    bool getClustersInTower(uint16_t crystals[NCrystalsPerEtaPhi] [NCrystalsPerEtaPhi],
19
20
        uint16_t *peakEta,
21
        uint16_t *peakPhi,
22
        uint16_t *largeClusterET,
23
        uint16_t *smallClusterET);
24
    bool mergeClusters(uint16_t ieta1, uint16_t iphi1, uint16_t itet1, uint16_t icet1,
26
        uint16_t ieta2, uint16_t iphi2, uint16_t itet2, uint16_t icet2,
27
        uint16_t *eta1, uint16_t *phi1, uint16_t *tet1, uint16_t *cet1,
        uint16_t *eta2, uint16_t *phi2, uint16_t *tet2, uint16_t *cet2);
28
29
    void stitchNeighbors(bool stitch, Tower Ai, Tower Bi, Tower &Ao, Tower &B);
```

algo_top.cppalgo_top.hhelperFunctions.cpphelperFunctions.h

Summary: Project

Write an algorithm to cluster ECAL and HCAL energies for Regional Calorimeter Trigger using HLS and synthesis the results

- 1. Input per tower (ECAL + HCAL)
- 2. Cluster ECAL energies for each tower
 - Divide the RCT card further to make life simple
- 3. Stitch together the clusters for neighbouring towers
- 4. Sort the final list
- 5. Send just 12 towers per RCT region

Questions?

Acknowledgement

Lectures are compiled using content from Xilinx's public pages/examples or different user guides

Additional material

Assignment submission

- Where to submit:
 - https://pages.hep.wisc.edu/~varuns/assignments/TAC-HEP/
- Use your login machine credentials

- Submit one file per week
- Try to submit by following week's Tuesday

Correct Time

From 03.28.2023 onwards

- Tuesdays: 9:00-10:00 CT / 10:00-11:00 ET / 16:00-17:00 CET
- Wednesday: 11:00-12:00 CT / 12:00-13:00 ET / 18:00-19:00 CET

Jargons

- ICs Integrated chip: assembly of hundreds of millions of transistors on a minor chip
- PCB: Printed Circuit Board
- LUT Look Up Table aka 'logic' generic functions on small bitwidth inputs. Combine many to build the algorithm
- FF Flip Flops control the flow of data with the clock pulse. Used to build the pipeline and achieve high throughput
- DSP Digital Signal Processor performs multiplication and other arithmetic in the FPGA
- BRAM Block RAM hardened RAM resource. More efficient memories than using LUTs for more than a few elements
- PCIe or PCI-E Peripheral Component Interconnect Express: is a serial expansion bus standard for connecting a computer to one or more peripheral devices
- **InfiniBand** is a computer networking communications standard used in high-performance computing that features very high throughput and very low latency
- **HLS** High Level Synthesis compiler for C, C++, SystemC into FPGA IP cores
- DRCs Design Rule Checks
- **HDL** Hardware Description Language low level language for describing circuits
- RTL Register Transfer Level the very low level description of the function and connection of logic gates
- **FIFO** First In First Out memory
- Latency time between starting processing and receiving the result
 - Measured in clock cycles or seconds
- II Initiation Interval time from accepting first input to accepting next input

Assignment Week-3

- Use target device: xc7k160ffbg484-2
- Clock period of 10ns
- 1. Execute the code (lec5Ex2.tcl) using CLI (slide-25) and compare the results with GUI results for C-Simulation, C-Synthesis
- 2. Vary following parameters for two cases: high and very high values and compare with 1 for both CLI and GUI
 - Variable: "samples"
 - · Variable: "N"
- 3. Run example lec3Ex2a

Assignment Week-4

- 1. Do a matrix multiplication of two 1-dimensional arrays A[N]*B[N], where N > 5
 - a) Report synthesis results without any pragma directives
 - b) Add as many pragma directives possible
 - i. Report any conflicts (if reported in logs) between two pragmas
- 2. Compare the analysis perspective (Performance) for different case shared today
- 3. For Array_partitioning, instead of using complete, use block and cyclic with different factors

Assignment Week-5

- 1. Do exercise mention on slide-24
- 2. A matrix multiplication using two for loops and compare results for pragma loop_flatten & unroll
- 3. Write a simple program doing arithmetic operations(+, -, *, /, %) between two variable use of arbitrary precision to compare results between stand c/c++ data types and using ap_(u)int<N>
- 4. Write a program using an array with N(=10/15/20) elements and then restructure the code with a struct having N-data member. Compare the results of two programs