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I present here a detailed calculation of the H →W
+

W
− decay rate.
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LAGRANGIAN DENSITY TO INVARIANT AMPLITUDE

For a Higgs boson decay to two W bosons, the Lagrangian density comes from the Higgs sector of the standard
model Lagrangian. The Z boson and photon terms can be excluded.
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1

2
(∂µH) (∂µH) +

1

2
µ2H2 +

g2v2

4
W †

µWµ +
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W †
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︸ ︷︷ ︸
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µ
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︸ ︷︷ ︸

W boson kinetic terms

To calculate the invariant amplitude for the decay, I want the interaction Lagrangian.

L =
g2v

2
W †

µWµH

From this I need the interaction Hamiltonian density.

HI =
∑

fields

π(x)Φ̇(x) − LI(x)

H(p)
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FIG. 1: H →W
+
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− Decay
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where Φ(x) is a position-space field and π(x) is its conjugate momentum field. However, in this case there are no
time-derivatives of fields in the interaction Lagrangian density. So it is simply

HI(x) = −L

= −g2v

2
W †

µWµH

The scattering matrix for this interaction is

〈k1, k2|S|p〉 = 〈k1, k2|1|p〉 + i〈k1, k2|T |p〉

where we recall that the scattering matrix is defined as the time-evolution operator as t → ∞.

〈k1, k2|S|p〉 = lim
t→∞

〈k1, k2|eiH(2t)|p〉

The interaction component here is what I want to calculate. From (4.90) Peskin,

i〈k1, k2|T |p〉 = lim
t→∞(1−iε)

〈k1, k2|T exp



−i

t∫

−t

dt′HI(t
′)



|p〉

That exponential expands as (from (4.22) Peskin)

T exp



−i

t∫

−t

dt′HI(t
′)



 = 1 + (−i)

t∫

−t

dt1HI(t1) +
(−i)2

2!

t∫∫

−t

dt1dt2T [HI(t1)HI(t2)] + · · ·

This scenario is just a tree-level decay–there are no loops to consider or propagators between two spacetime coor-
dinates x1 and x2. Hence, let’s consider only the contribution from the 1st order term. The interaction part of the
scattering matrix becomes

i〈k1, k2|T |p〉 ∼= 〈k1, k2|(−i)

t∫

−t

dt1HI(x1)|p〉

where HI(x) =
∫

d3xHI(x), and in the Hamiltonian I replaced the variable t with the full spacetime variable x because
all components now come into play.

i〈k1, k2|T |p〉 = (−i)〈k1, k2|
t∫

−t

dt1

∫

d3xHI(x)|p〉

= −i〈k1, k2|
∫

d4xHI(x)|p〉

= −i

∫

d4x〈k1, k2|HI(x)|p〉

= −i

∫

d4x〈k1, k2|
−g2v

2
W †

µWµH |p〉

=
−ig2v

2

∫

d4x〈k1, k2|W †
µWµH |p〉

Assume the fields are now contracted with their state vectors.
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If we go to my contractions section:

〈k|Wµ(x) = 〈0|ε∗µ(k, λ)eik·x

H |p〉 = e−ip·x|0〉

Using these

i〈k1, k2|T |p〉 =
ig2v

2

∫

d4xǫ∗µ(k1, λ1)e
ik1·xǫ∗

µ

(k2, λ2)e
ik2·xe−ip·x

=
ig2v

2

∫

d4xǫ∗µ(k1, λ1)ǫ
∗µ

(k2, λ2)e
i(k1+k2−p)·x

=
ig2v

2
ǫ∗µ(k1, λ1)ǫ

∗µ

(k2, λ2)δ
4(k1 + k2 − p)(2π)4

Recall from (4.73) Peskin

i〈k1, k2|T |p〉 = (2π)4δ4(k1 + k2 − p) · iM(p → k1, k2)

⇒ iM =
ig2v

2
ǫ∗µ(k1, λ1)ǫ

∗µ

(k2, λ2)

INVARIANT AMPLITUDE TO DECAY RATE (Γ)

The decay rate from (4.83) Peskin is

Γ =
1

2mH

[
d3k1

2E1(2π)3
d3k2

2E2(2π)3

]
∑

λ1,λ2

|M|2(2π)4δ4(k1 + k2 − p)

So let’s square the amplitude

iM = igmW ǫ∗µ(k1, λ1)ǫ
∗µ

(k2, λ2)

|M|2 = g2m2
W

(
ǫ∗µ(k1, λ1)ǫν(k1, λ1)

) (

ǫ∗
µ

(k2, λ2)ǫ
ν(k2, λ2)

)

Now deal with the spin sum

∑

λ1,λ2

|M|2 = g2m2
W

∑

λ1,λ2

(
ǫ∗µ(k1, λ1)ǫν(k1, λ1)

) (

ǫ∗
µ

(k2, λ2)ǫ
ν(k2, λ2)

)

= g2m2
W

(

−gµν +
k1µk1ν

m2
W

) (

−gµν +
k

µ
2 kν

2

m2
W

)

= g2m2
W

(

gµνgµν − gµν

k
µ
2 kν

2

m2
W

− gµν k1µk1ν

m2
W

+
k1µk1νk

µ
2 kν

2

m2
W

)

= g2m2
W

(

4 − k2
2

m2
W

− k2
1

m2
W

+
(k1 · k2)

2

m4
W

)

Recall that in a reaction the 4-momentum squared is a relativistic invariant. Using this invariant, we may alternate
among before and after the decay, and viewing from the lab frame or CM frame (or any other frame). In this case, let’s
try before and after decay entirely in the CM frame. This means ~p = 0, and for the W boson energy and momenta
E1 = E2 = E, ~k1 = −~k2 ≡ ~k.

⇒ k2

m2
W

=
E2 − |~k|2

m2
W

=
(m2

W + |~k|2) − |~k|2
m2

W

= 1
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Also,

(mH , 0)2 = (E1 + E2, ~k1 + ~k2 = 0)2

m2
H = 4E2

2 = 4(m2
W + |~k|2)

m2
H = 4m2

W + 4|~k|2

m2
H − 2m2

W = 2(m2
W + 2|~k|2)

m2
H − 2m2

W

2
= k1 · k2

where in the last line I used

k1 · k2 = (E1, ~k1) · (E2, ~k2)

= (E,~k) · (E2,−~k)

= E2 + |~k|2

= (m2
W + |~k|2) + |~k|2

= m2
W + 2|~k|2

Now we may put these results back into the spin-summed invariant amplitude.

∑

λ1,λ2

|M|2 = g2m2
W

(

4 − 1 − 1 +
(m2

H − 2m2
W )2

4m4
W

)

= g2m2
W

(

2 +
m2

H − 4m2
W m2

H + 4m4
W

4m4
W

)

= g2m2
W

(

2 +
m4

H

4m4
W

− m2
H

m2
W

+ 1

)

= g2m2
W

(
3m4

H

4m4
W

· 4m4
W

m4
H

+
m4

H

4m4
W

− m4
H

4m4
W

· 4m4
W

m4
H

· m2
H

m2
W

)

= g2m2
W

m4
H

4m4
W

(

1 +
12m4

W

m4
H

− 4m2
W

m2
H

)

=
g2m4

H

4m4
W

(

1 − 4m2
W

m2
H

+
12m4

W

m4
H

)

Put this into the decay rate.

dΓ =
1

2mH

[
d3k1

2E1(2π)3
d3k2

2E2(2π)3

]
g2m4

H

4m4
W

(

1 − 4m2
W

m2
H

+
12m4

W

m4
H

)

(2π)4δ4(k1 + k2 − p)

Γ =
g2m3

H

32(2π)2m2
W

(

1 − 4m2
W

m2
H

+
12m4

W

m4
H

) ∫
d3~k1

E1

d3~k2

E2
δ(E1 + E2 − Ep)δ

3(~k1 + ~k2 − ~p)

In the CM frame, Ep = mH and ~p = 0.

Γ =
g2m3

H

32(2π)2m2
W

(

1 − 4m2
W

m2
H

+
12m4

W

m4
H

) ∫
d3~k1

E1

d3~k2

E2
δ(E1 + E2 − mH)δ3(~k1 + ~k2)

Γ =
g2m3

H

32(2π)2m2
W

(

1 − 4m2
W

m2
H

+
12m4

W

m4
H

) ∫
d3~k

√

m2
W + |~k1|2

d3~k
√

m2
W + |~k2|2

δ(E1 + E2 − mH)δ3(~k1 + ~k2)
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Perform the k2 integration. Because of δ3(~k1 + ~k2), this will just enforce ~k1 = −~k2 ⇒ |~k1|2 = |~k2|2. Since we are

dealing only with these momenta squared now, let’s drop the index and just use |~k|.

Γ =
g2m3

H

32(2π)2m2
W

(

1 − 4m2
W

m2
H

+
12m4

W

m4
H

)∫
d3~k

m2
W + |~k|2

δ(E1 + E2 − mH)

Express the remaining differential in spherical coordinates d3~k = |~k|2d|~k| sin θdθdφ, where
∫

sin θdθdφ = 4π.

Γ =
g2m3

H

32(2π)2m2
W

(

1 − 4m2
W

m2
H

+
12m4

W

m4
H

) ∫ |~k|2d|~k| sin θdθdφ

m2
W + |~k|2

δ(E1 + E2 − mH)

In the CM frame, E1 = E2 =

√

m2
W + |~k|2.

Γ =
g2m3

H

8(4π)m2
W

(

1 − 4m2
W

m2
H

+
12m4

W

m4
H

) ∫

d|~k| |~k|2

m2
W + |~k|2

δ

(

2

√

m2
W + |~k|2 − mH

)

We must take care here. The integral is over |~k| but the argument of the δ-function has more than one zero, so

there is an ambiguity of which value |~k| should take from the integration. Fortunately, it is possible to expand the
δ-function as follows:

δ(f(x)) =
∑

j

1

f ′
(

x
j
0

)δ
(

x − x
j
0

)

where j counts over the zeros of f(x) and f ′ = df
dx

. Let f(k) = 2
√

m2
W + |~k|2 − mH and find the zeros:

mH = 2

√

m2
W + |~k|2

m2
H

4
= m2

W + |~k|2

1

4

(
m2

H − 2m2
W

)
= k2

±1

2

√

m2
H − 2m2

W = k

However, a negative momentum magnitude doesn’t make sense so we only use the positive one.

f ′(k) =
2k

√

m2
W + k2

f ′(k0) =

√

m2
H − 4m2

W
√

m2
W + 1

4m2
H − m2

W

f ′(k0) =

√

m2
H − 4m2

W
1
2m2

H

f ′(k0) =
2

mH

√

m2
H − 4m2

W

⇒ δ(f(k)) = − mH

2
√

m2
H − 4m2

W

δ

(

|~k| − 1

2

√

m2
H − 4m2

W

)
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Put this into the decay rate.

Γ =
g2m3

H

32πm2
W

(

1 − 4m2
W

m2
H

+
12m4

W

m4
H

) ∫

d|~k| |~k|2

m2
W + |~k|2

mH

2
√

m2
H − 4m2

W

δ

(

|~k| − 1

2

√

m2
H − 4m2

W

)

=
g2m3

H

32πm2
W

(

1 − 4m2
W

m2
H

+
12m4

W

m4
H

) 1
4 (m2

H − 4m2
W )

m2
W + 1

4 (m2
H − 4m2

W )

mH

2
√

m2
H − 4m2

W

=
g2m3

H

32πm2
W

(

1 − 4m2
W

m2
H

+
12m4

W

m4
H

) 1
4 (m2

H − 4m2
W )

1
4m2

H

mH

2
√

m2
H − 4m2

W

=
g2m3

H

32πm2
W

(

1 − 4m2
W

m2
H

+
12m4

W

m4
H

) √

m2
H − 4m2

W

2mH

=
g2m3

H

64πm2
W

(

1 − 4m2
W

m2
H

+
12m4

W

m4
H

)
√

1 − 4m2
W

m2
H

=
GF m3

H

8
√

2π

(

1 − 4m2
W

m2
H

+
12m4

W

m4
H

)
√

1 − 4m2
W

m2
H

where GF =
√

2g2

8m2

W

⇒ GF√
2

= g2

8m2

W

.


