NEUTRINO SIGNATURES of DARK MATTER

NEUTRINOS & DARK MATTER MADISON, WI AUG. 31-SEP, 4, 2009 HASAN YÜKSEL BARTOL RESEARCH INSTITUTE UNIVERSITY OF DELAWARE Primary Sources: e⁻ accelerated in supernova remnants Secondary Sources: e[±] from collisions between cosmic rays & ISM protons

Charge Sign Dependent Solar Modulation

Reversals of the solar magnetic field occurs every 11 years.

Geminga:

- Radio quite
- First pulsar to be discovered through gamma rays
- Until recently, no evidence of a high energy activity beyond immediate neighborhood

 $r_G \sim 250^{+120}_{-62} \,\mathrm{pc}$ $t_{\rm G} \sim 3 \times 10^5 \,\mathrm{yr}$

• Displacement of up to ~100 pc since its birth is possible

Milagro Galactic Plane Survey

Object	$\begin{array}{c} \text{Location} \\ (\mathbf{l},\mathbf{b}) \end{array}$	$\begin{array}{c} {\rm Flux}^{\rm c} {\rm at} 20 {\rm TeV} \\ \times 10^{-15} \\ {\rm TeV}^{-1} {\rm cm}^{-2} {\rm s}^{-1} \end{array}$	$egin{array}{c} { m Extent} \\ { m Diameter} \\ ({ m deg}) \end{array}$
Crab	184.5, -5.7	10.9 ± 1.2	-
MGRO J2019+37	75.0, 0.2	8.7 ± 1.4	$1.1^\circ\pm0.5^\circ~d$
MGRO J1908+06	40.4, -1.0	8.8 ± 2.4	$< 2.6^{\circ}(90\% CL)$
MGRO J2031+41	80.3, 1.1	9.8 ± 2.9	$3.0^\circ \pm 0.9^\circ$
C1	77.5, -3.9	3.1 ± 0.6	$< 2.0^{\circ} (90\% CL)$
C2	76.1, -1.7	3.4 ± 0.8	e
C3	195.7, 4.1	6.9 ± 1.6	$2.8^{\circ} \pm 0.8^{\circ}$
C4	105.8, 2.0	4.0 ± 1.3	$3.4^{\circ} \pm 1.7^{\circ}$

- Milagro detection puts Geminga among growing class of TeV PWNe
- Detection of TeV gamma rays indicates the existence of a nearby cosmic ray accelerator:
 - If gamma rays have a <u>leptonic</u> origin, the source is young & close enough to make a significant contribution to CR electrons & positrons
- We can go beyond simply assuming pulsar's are responsible for the observed positron/electron excess

More Distant PWN by HESS

A Generic Leptonic Model

$$\gamma_{max} = E_{max} / (m_e c^2)$$

$$dN/d\gamma = N_0 \gamma^{-\alpha} e^{-\gamma/\gamma_{max}}$$

$$E_{min} = 1 \text{ GeV}, E_{max} = 200 \text{ TeV}$$

The age of Geminga is already much larger than the IC cooling time on CMB photons of the > 100 TeV electrons needed to produce > 20 TeV gamma rays --> Fresh Pair Production

Future Prospects

10⁴⁴

10⁴³ A³L] ⁺⁰ 0⁴² Np

 10^{40}

10

Milagro

10

E [TeV]

Geminga Pulsar

Crab-

Pulsar

1000

100

Local Positrons from a Nearby Continuously Emitting Source

Assuming breaking via magnetic dipole radiation: Pulsar spin down luminosity evolves as $\propto (1 + t/t_0)^{-\frac{n+1}{n-1}}$

The injection rate of relativistic e-e+ by Geminga:

$$\mathcal{L}_e(t) = \frac{\mathcal{E}_G}{t_G} \frac{(1 + (t_G - t)/t_0)^{-2}}{\int^{t_G} dt' (1 + (t_G - t')/t_0)^{-2}}$$

Geminga was much stronger in the past and dominated the TeV sky: Multi-GeV positrons may still be reaching us today

Possible Geminga Contributions

Dotted, Solid, Dashed lines correspond to $t_G = 3 \times 10^5$ yr $\mathcal{E}_G = 1, 2, 3 \times 10^{48}$ erg $\delta = 0.4, 0.5, 0.6$ $r_G = 150 \rightarrow 250$ pc, 220 pc, 250 $\rightarrow 200$ pc

Yuksel, Kistler, Stanev

What about Dark Matter?

"LOTS OF THINGS ARE INVISIBLE, BUT WE DON'T KNOW HOW MANY BECAUSE WE CAN'T SEE THEM ."

- What to look for:
 - Annihilating dark matter
 - Decaying dark matter
- Where to look at:
 - γ-rays from Galactic Center, Galactic Halo, Dwarf Satellites, Nearby Galaxies, Cosmic sources
 - v's from the Sun, Galactic Halo
 - Anti-particle spectrum measured in solar neighborhood

Model Independent Limit on DM Annihilation Cross Section

- Assume DM annihilations only produce Standard Model final states
- Stringent upper limit on total annihilation cross section can be obtained by assuming only neutrinos are produced in final states (worst case, least visible)

• Anything else will eventually produce much more visible gamma rays (leading to a stronger limit)

Compare to Atmospheric Nu Flux

Yuksel, Horiuchi, Beacom, Ando

Limits on <σv> from v Flux

Milky Way Halo: Yuksel, Horiuchi, Beacom, Ando

 $\bullet \bullet \bullet$