Double Chooz

Matthew Worcester (University of Chicago) for the Double Chooz Collaboration Neutrinos and Dark Matter 2009 September 1, 2009

Neutrino Mixing

Motivation

Reactor Neutrinos

- Nuclear reactors are intense vectors sources with a well-measured flux and spectrum
 - □ 3 GW → $6 \times 10^{20} \ \overline{\nu}_e$ /sec 700 events /year/ton at 1500 m
 - visible spectrum peak at ~ 3.7 MeV
 - oscillation max. for $\Delta m^2=2.5\times10^{-3} \text{ eV}^2$ at L ~1500 m

From Bemporad, Gratta and Vogel

- Disappearance measurement:
 - look for small deviation between near (~200m) and far (~1500m) detectors:
 - counting = number of events
 - shape = energy spectra

Detection

- Inverse β -decay: $\overline{\nu_e} + p \rightarrow e^+ + n$ 155 Gd, 157 Gd capture:
 - $n + Gd \rightarrow 8$ MeV of γs
 - τ ~ 30 µsec
 (0.1% Gd concentration)
- Events selected by coincidence
- v energy spectrum given by visible e⁺ energy:
 E_v = E_{vis} + 1.8 MeV 2m_e

Liquid Scintillator with Gadolinium

🕪 = Photomultiplier Tube

θ_{13} Limits

CHOOZ: $R=N_{meas}/N_{exp} = 1.01 \pm 2.8\%$ (stat) $\pm 2.7\%$ (sys)

 $\theta_{13} < 9.5 \deg_{@ 90\% CL}$

- CHOOZ: 5.55 m³ doped target in single detector @ 1050m
 - ~3 months data-taking
 - 2% systematic on reactor flux

Improve Limits

- Add identical near detector: need only relative acceptance
 - remove systematics from reactor neutrino flux, energy
- New detector design
 - Iow radioactivity PMTs protected by mineral oil
 - addition of non-doped "gamma-catcher" defines target volume
- New Gd scintillator mixture: instability in CHOOZ scintillator attenuation
- Reduce cosmogenic backgrounds: add outer detectors

Double Chooz

<u>Near + far detectors</u> 45,600 v_e (far detector) in 3 years 0.5% stat. uncertainty $\frac{Far detector only}{22,800 v_e} in 1.5 years$ 0.7% stat. uncertainty

Features of Double Chooz site:
2×4.27 GW thermal reactors – 8.54 GW maximum power
Far site hall reusable from original CHOOZ with 300 mwe mountain overburden at 1050 m baseline
Near site: ~40 m rock (115 mwe) overburden at 410 m baseline

Collaboration

Spokesman: Hervé de Kerret (APC)

UK: Sussex

Japan: HIT, Kobe, Niigata, TGU, TIT, TMU, Tohoku Russia: RAS, RRC Kurchatov Institute USA: Alabama, ANL, Chicago, Columbia, Drexel, Illinois, Kansas, LLNL, LSU, Notre Dame, Sandia, Tennessee, UCD

Brazil: CBPF. UNICAMP

Phase 1: Far detector only

Systematic	% Error
Reactor Power	1.9
Energy per fission	0.6
v _e /fission	0.2
v cross section	0.1

Reactor

- 2.0% total systematic
- based on CHOOZ analysis
- dominates Phase 1 errors

Detector and data selection

Systematic	% Error
Detector volume	0.2
Scintillator density	0.01
H/C composition	< 0.5
Gd concentration	0.3
Deadtime	0
e+ energy cut	0.1
n loss (spill in/out)	< 1.0
n energy cut	0.1
Time cut	0.4

• < 1.3% total systematic (CHOOZ analysis: 1.5% total)</p>

Phase 2: Near + Far Detectors

Systematic errors on the relative normalization

			CHOOZ	Double Chooz
Reactor		Solid Angle	_	0.2%
Detector	H nuclei in Target	Volume	0.3%	0.2%
		Fiducial Volume	0.2%	0
		Density		0.1%
		H/C	0.8%	0
Detector	Electronics	Dead Time	_	0%
Particle	Positron	Escape	0.1%	0
Identification		Capture	0	0
		Identification Cut	0.8%	0.1%
Particle	Neutron	Escape	1.0%	0
Identification		Capture (% Gd)	0.85%	0.3%
		Identification Cut	0.4%	0.1%
Particle	Antineutrino	Time Cut	0.4%	0.1%
Identification		Distance Cut	0.3%	0
		Unicity	0.5%	0
Total			1.5%	0.5%

- PMT radioactivity protected by oil buffer (CHOOZ: 60 Hz, DC: 1.5 Hz)
- cosmogenic neutron background reduced by improved vetos
- *in situ* calibrations improve energy scale for selection cuts

Backgrounds

- Accidental
 - random coincidences between two different events (*e.g.* radioactive decay plus cosmogenic neutron) together fake IBD signal
- Correlated
 - fast neutron from muon showers near detector. A single neutron can elastically scatter in the target and subsequently capture on Gd
 - muon capture on nuclei in dead material along muon track can produce several high-energy neutrons
 - 9Li production by muon spallation inside target. Production mechanism not well-understood. About 50% of β decays produce a neutron. 178 ms half life causes prohibitive deadtime if vetoed by muon track in target.

Detector	Site	Background					
			Accidental		Correlated		
			Materials	PMTs	Fast n	μ -Capture	⁹ Li
Double Chooz		Rate (d^{-1})	0.1 ± 0.1	0.3 ± 0.2	0.11 ± 0.11	< 0.1	1.0 ± 0.5
$(69 \nu/d)$	Far	bkg/ν	0.1%	0.4%	0.2%	< 0.1%	1.4%
		systematics	< 0.1%	$<\!0.1\%$	0.2%	$<\!0.1\%$	0.7%
Double Chooz		Rate (d^{-1})	0.5 ± 0.3	1.7 ± 0.9	0.15 ± 0.15	0.4	9 ± 5
$(1012 \nu/d)$	Near	bkg/ν	< 0.1%	0.2%	< 0.1%	< 0.1%	0.9%
		systematics	$<\!0.1\%$	$<\!0.1\%$	$<\!0.1\%$	$<\!0.1\%$	0.5%

Expected Sensitivity

Inner Detectors

h = 2458mmTarget d = 2300 mm□ 10.3 m³ (8.8 tonnes) of 0.1% Gd-doped LS h = 3574mmGamma-catcher d = 3392 mm□ ~50 cm (22.6 m³) of LS h = 5674mmBuffer d = 5516mm 105 cm of nonscintillating organic liquid (114.2 m³) 390 10" Hamamatsu PMTs h = 6640 mmInner Veto d = 6590 mm□ 90 m³ LS with 78 8" PMTs

Detector Simulation

Geant4-based Monte Carlo with ROOT output

- detailed detector geometry and pulse modeling
- \overline{v}_{e} events generated throughout central detectors
- two reconstructed events within 100 µsec window

Outer Veto

PMT

LAYOUT

- □ two 7.0 x 7.2 meter panels ~1 m above the inner detectors
 - overlapped vertically for continuous active coverage
 - mounted to retractable steel shielding
- □ one 3.6 x 3.6 m upper panel above glove box
 - protects neck and provides tracking

Raw muon ratesNear5.9 Hz/m²Far0.62 Hz/m²

Veto Effect

since the meridy linear							
Detector	Site		Background				
			Accidental Corr			Correlated	
			Materials	PMTs	Fast n	$\mu\text{-}\mathrm{Capture}$	^o Li
Double Chooz		Rate (d^{-1})	-0.5 ± 0.3	-1.5 ± 0.8	2.0 ± 2.0	28	1.0 ± 0.5
$(69 \nu/d)$	Far	$b kg / \nu$	-0.7%	2.2%	2.9%	>, < 40%	1.4%
Double Chooz		Rate (d^{-1})	5 ± 3	17 ± 9	9.1 ± 9.1	266	9±5
$(1012 \nu / d)$	Near	bkg/ν	0.5%	1.7%	0.8%	26%	0.9%
							1
With Inner and	l Outer	Veto System					
With Inner and Detector	l Outer Site	Veto System			Background		
With Inner and Detector	l Outer Site	Veto System	Accid	ental	Background	i Correlated	1
With Inner and Detector	l Outer Site	Veto System	Accid Materials	ental PMTs	Background Fast n	1 Correlated u-Capture	
With Inner and Detector Double Choos	l Outer Site	Velo System	Accid Materials 0.1 ± 0.1	ental PMTs 0.3 ± 0.2	Background Fast n 0.11 ± 0.11	I Correlated a-Capture < 0.1	9 _{Li}
With Inner and Detector Double Choox (69 \nu/d)	l Outer Site Far	Veto System Rate (d ⁻¹) bkg/v	Accid Materials 0.1 ± 0.1 0.1%	ental PMTs 0.3 ± 0.2 0.4%	Background Fast n 0.11 ± 0.11 0.2%	i Correlated μ -Capture < 0.1 < 0.1%	9 _{Li} 1.0±0.5 1.4%
With Inner and Detector Double Chooz (69 \nu/d)	Site Far	Velo System Rate (d^{-1}) bkg/ ν systematics	Accid Materials 0.1 ± 0.1 0.1% <0.1%	ental <u>PMTs</u> 0.3 ± 0.2 0.4% <0.1%	Backgroun o Fast n 0.11 ± 0.11 0.2% 0.2%	1 Correlated μ -Capture < 0.1 $< 0.1\%$ $< 0.1\%$	9 <u>Li</u> 1.0±0.5 1.4% 0.7%
With Inner and Detector Double Choos (69 \nu/d) Double Choos	l Outer Site Far	Veto System Rate (d^{-1}) bkg/ ν systematics Rate (d^{-1})	Accid Materials 0.1 ± 0.1 0.1% <0.1% 0.5 ± 0.3	ental PMTs 0.3 ± 0.2 0.4% <0.1% 1.7 ± 0.9	Background Fast n 0.11 ± 0.11 0.2% 0.2% 0.15 ± 0.15	Carrelated a-Capture < 0.1 < 0.1% < 0.1% 0.4	9 _{Li} 1.0±0.5 1.4% 0.7% 9±5
With Inner and Detector Double Choos (69 \nu/d) Double Choos (1012 \nu/d)	I Outer Site Far Near	Velo System Rate (d^{-1}) bkg/ ν systematics Rate (d^{-1}) bkg/ ν	Accid Materials 0.1 ± 0.1 0.1% <0.1% 0.5 ± 0.3 < 0.1%	ental PMTs 0.3 ± 0.2 0.4% <0.1% 1.7 ± 0.9 0.2%	Background Fast n 0.11 ± 0.11 0.2% 0.2% 0.15 ± 0.15 < 0.1%	1 Correlated μ -Capture < 0.1 $< 0.1\%$ $< 0.1\%$ 0.4 $< 0.1\%$	9 _{Li} 1.0±0.5 1.4% 0.7% 9±5 0.9%

Background candidate neutron study

- rate of neutrons (from "near-miss" muons) entering the central detector as a function of OV width
 - muons which deposit energy in the central detectors are removed
- FLUKA generated muon sample

Near site, 100% efficient detectors

Far Detector Construction

Original CHOOZ hall and pit refurbished and new cleanliness standards achieved

Shield of 15 cm demagnetized

Construction pictures from CEA/CNRS/IRFU

Far Detector Progress

Far Detector Progress

Far Detector Progress

Far Detector Current Status

Near Detector Status

4

May 20th the agreement for the Near laboratory construction has been signed. The agreement includes the region Champagne-Ardennes,

EDF and French agencies.

Schedule

- Geological study done (February)
- Tender process for construction
- Constructed at the end of 2010

Schedule

Geological survey completed for near lab February 2009

Far detector

- Now installing acrylic vessels
- Outer veto module construction on schedule \rightarrow
- Inner detector closed at the end of 2009
- Liquid scintillator filling through April 2010
- Begin data-taking with inner far detector in April
- Outer veto installed after filling (not required for inner detector data taking)
- Near hall construction begins end of 2010
- Near detector data taking in 2011

Conclusion

- Double Chooz will be the first new generation detector reactor neutrino experiment to measure θ_{13}
- April 2010 begin far detector data taking
 - achieve current limit of sin²2θ₁₃ < 0.15 at 90% CL with approximately one month of data
- near detector data taking in 2011
- five years after start of data taking (3 yrs of two detectors): sin²2θ₁₃ < 0.03 at 90% CL