Supernova Neutrinos and Nucleosynthesis

Yong-Zhong Qian University of Minnesota

Neutrinos & Dark Matter 2009 September 2, 2009

The Energy from Radioactivity in SN1987A

- Early Light Curve Dominated by ⁵⁶Ni and ⁵⁷Co Radioactivity (Gamma-Ray Lines Detected by SMM and OSSE, respectively)
- Late Light Curve Power Source Unknown: ~10⁻⁴ M_o of ⁴⁴Ti? Pulsar?
- Detection by INTEGRAL Possible, if ⁴⁴Ti Source

Tominaga et al. (2007)

normal SNe $M \sim 12-25 M_{\odot}$

 $\frac{\rm HNe}{M\sim 25\text{--}50\,M_{\odot}}$

faint SNe unimportant for nucleosynthesis

Periodic Table of Elements

	1		2	3		4		5		6	7		8	9		10)	11		12	13		14	15		16		17		18	
1	1 Atomic # 1 H Hydrogen 1.00794 Name Atomic Mass			[Solid			Γ			Metals					Nonme	ta	Is									: e um 12602	к			
2	3 Li Lithium 6.941	2 1 E Be 9J	Be eryllium 012182		Hg H	Liquid Gas				Alkali me	Alkaline earth me	La	anthano	ids	l ransitio metals	Poor me		Other nonmeta	Robie ga		5 B Boron 10.811	23	6 4 C Carbon 12.0107	7 N Nitrogen 14.0067	25	8 O Oxygen 15.9994	6	9 F Fluorine 18.9984032	² 7 10 Neo 20.1	e 797	K
3	11 Na Sodium 22.9897692	² 8 1 N 28 24	2 Ng 4.3050	[Rf	Unkno	own				tals	Ac	ctinoids		J	tals		<u>s</u>	ISes		13 Aluminium 26.9815386	2 8 3	14 ² 8 Si Silicon 28.0855	15 P Phosphorus 30.973762	2 8 5	16 S Sulfur 32.065	2 8 6	17 Cl Chlorine 35.453	Argo 39.9	r 201 148	K L M
4	19 K Potassium 39.0983	² 8 1 Ca 40	20 28 Ca 2 alcium 0.078	21 Sc Scandium 44.955912	2 8 9 2	22 Ti ¹ ¹ ¹	² 23 ⁰ V Vanadi 50.941	1 um 5	24 Cr Chron 51.996	2 8 13 1 1 1 31	25 Mn Manganese 54.938045	2 8 13 2	26 ² Fe ¹⁴ ¹⁴ ²	27 Co Cobalt 58.9331	2 8 15 2 95	28 Ni Nickel 58.6934	2 8 16 2	29 Cu Copper 63.546	2 8 18 1	30 2 Zn 2 Zinc 65.38	31 Ga Gallium 69.723	2 8 18 3	32 2 Ge ⁸	33 As Arsenic 74.92160	2 8 18 5	34 Se Selenium 78.96	2 8 18 6	35 Br Bromine 79.904	36 7 8 8 83.7	r ¹⁸ oton '98	K L M N
5	37 Rb Rubidium 85.4678	² ⁸ ¹⁸ ¹⁸ ¹⁸ ¹⁸ ¹⁸ ¹⁸ ¹⁸	18 28 Sr 28 18 2 2 2 2 2 2 2 2 2 2 2 2 2	39 Y Yttrium 88.90585	2 8 18 9 2 2 2	40 Zr ¹ Zirconium 91.224	² 41 Niobiur 92.906	1 1 38	42 Molyb 95.96	2 8 18 13 1 denum	43 TC Technetium (97.9072)	2 4 18 14 1 F	44 28 Ru 15 Ruthenium 101.07	45 Rh Rhodium 102.905	2 8 18 16 1 1 50	46 Pd Palladium 106.42	2 8 18 0	47 Ag Silver 107.8682	2 8 18 18	48 28 Cd 18 Cadmium 112.411	49 In Indium 114.818	2 8 18 18 3	50 28 Sn 18 118.710 28	51 Sb Antimony 121.760	2 8 18 18 5	52 Te Tellurium 127.60	2 8 18 18 6	53	54 Xen 131.	e 1	KLMNO
6	55 CS Caesium 132.905451	² ¹⁸ ¹⁸ ¹⁸ ¹⁸ ¹⁸ ¹⁸ ¹⁸ ¹⁸	i6 2 Ba 18 arium 2 37.327	57–71	1	72 Hf ³ Hafnium 178.49	² 73 ² Ta Tantalu 180.94	1 3 1 788	74 W Tungs 183.84	2 8 18 32 12 12 12	75 Re Rhenium 186.207	2 8 18 32 13 2 13 2 1	76 28 0s 14 190.23	77 Ir Iridium 192.217	2 8 18 32 15 2	78 Pt Platinum 195.084	2 8 18 32 17 1	79 Au Gold 196.966569	2 8 18 32 18 1	80 2 Hg 18 Mercury 2 200.59	81 TI Thallium 204.3833	2 8 18 32 18 3	82 2 Pb 32 18 207.2 4	83 Bi Bismuth 208.98040	2 8 18 32 18 5	84 Polonium (208.9624)	2 8 18 32 18 6	85 At Astatine (209.9871)	86 R Rad (222	n 11 ion 12 2.0176)	KLMNOP
7	87 Fr Francium (223)	² ⁸ ¹⁸ ³² ¹⁸ ⁸ ⁸ ⁸ ¹ ⁸ ⁸ ¹ ² ²	8 2 Ra 32 adium 8 26) 2	89–10	13	104 Rf ¹ Ruhefordium ¹ (261)	² 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 3 3 1	106 Seabo (266)	2 8 18 32 32 rgium 12 2	107 Bh Bohrium (264)	2 8 18 32 32 13 1 2 (108 ² Hs ¹⁸ Hassium ¹⁴ 277) ²	109 Mt Meitnerii (268)	2 8 18 32 32 15 2	110 Ds Damstadiur (271)	2 8 18 32 32 m 17 1	111 Rg Roentgenium (272)	2 8 18 32 32 18 1	112 2 Ununbium (285) 12 2 2 2 2 2 2 2 2 2 2 2 2 2	113 Uut Ununtrium (284)	2 8 18 32 32 18 3	114 Uuq Uhunquadum (289) ² ⁸ ⁸ ³² ³² ¹⁸ ⁴	115 Uup Ununpertium (288)	2 8 18 32 32 18 5	116 Uunhexium (292)	2 8 18 32 32 18 6	117 Uus Urunseptum	11 U Unu (294	8 uo noctium	KLMNOPQ
						For elements with no stable isotopes, the mass number of the isotope with the longest half-life is in parentheses.																									
					Periodic Table Design and Interface Copyright © 1997 Michael Dayah. http://www.ptable.com/ Last updated: May 27, 2008																										
	Pt	ab	ole			57 La ¹ Lanthanum 138.90547	2 58 58 2 Cerium 140.11	1	59 Pr Praseco 140.90	2 8 18 21 9 mium 2 0765	60 Nd Neodymium 144.242	2 8 18 22 8 2 8 2 4 6	61 2 Pm 23 Promethium 2 (145)	62 Sm Samariu 150.36	2 8 18 24 8 2 8 2	63 Eu Europium 151.964	2 8 18 25 8 2	64 Gd Gadolinium	2 8 18 25 9 2	65 2 Tb 27 27 27 27 27 27 27 27 27 27	66 Dy Dysprosium 162.500	2 8 18 28 8 2	67 28 Ho 29 Holmium 164.93032	68 Er Erbium 167.259	2 8 18 30 8 2	69 Tm ¹ ¹ ¹ ¹ ¹	2 8 18 31 8 2	70 Yb ¹¹ Ytterbium 173.054	² ⁸ ⁸ ² ² ² ² ² ² ² ² ² ²	U 32 tium 9668	New room with
		.co	m			89 Actinium (227)	² 90 Th ² ² ² ² ² ²	1 3 1 806	91 Protac 231.03	2 8 18 32 20 tinium 9 3588	92 U Uranium 238.02891	2 8 18 32 21 9 2	93 28 Np 182 Neptunium 9 (237) 2	94 Pu Plutoniu (244)	2 8 18 32 24 m 2	95 Am Americium (243)	2 8 18 32 25 18 225 18 2	96 Cm ^{Curium} (247)	2 8 18 32 9 2	97 2 Bk 32 Berkelium 2 (247) 2	98 Cf Californium (251)	2 8 18 32 28 8 2	99 28 Es 182 Einsteinium 29 (252) 29	100 Fm Fermium (257)	2 8 18 32 30 8 2	101 Md Menddevium (258)	2 8 18 32 31 8 2	102 No Nobelium (259)	² ² ² ² ² ² ² ² ² ²	3 r 3 rencium	Newwar

stars make "metals" after the big bang

Michael Dayah

For a fully interactive experience, visit www.ptable.com

michael@dayah.com

© 2007 Kris Koenig

observations of metal abundances by Keck, VLT, Subaru

Stellar sources for early chemical evolution massive stars $M \gtrsim 8 M_{\odot} \Rightarrow \tau \lesssim 30 \text{ Myr}$ core-collapse SNe: neutron stars, black holes low- and intermediate-mass stars $M \sim 1-8 M_{\odot}, \langle M \rangle \sim 2 M_{\odot} \Rightarrow \tau \sim 1 \text{ Gyr}$ AGB: s-process (A > 70), white dwarfs WDs in binaries: SNe Ia (Fe group, A ~ 56) CCSNe over 10 Gyr: ~1/3 of solar Fe early (first Gyr): $[Fe/H] \lesssim -1.5$

Observations of Sr- & Ba-like elements (Westin et al. 2000; Hill et al. 2002)

Summary of observations

- wide variations in the ratio of elements between different groups
- Ba-like elements decoupled from Fe-like elements
- there must be an Fe source producing no Sr or Ba

three distinct types of sources

Three types of core-collapse SNe for nucleosynthesis

 $M \sim 8-11 M_{\odot}$ low-mass SNe: NS

 $M \sim 12-25 M_{\odot}$ normal SNe: NS $M \sim 25-50 M_{\odot}$ hypernovae (HNe): BH

Characteristics of stellar sources

sources	nucleosynthesis	remnants					
low-mass SNe	no Fe-like elements	NS					
normal SNe	Fe-like elements	NS					
HNe	Fe-like elements	BH					

in the neutrino-driven wind

(Woosley & Hoffman 1992)

Stellar sources for elements

sources	Fe-like elements	Sr-like elements	Ba-like elements				
low-mass SNe	No	Yes	Yes				
normal SNe	Yes	Yes	No				
HNe	Yes	No	No				

Interplay between supernova and neutrino Physics

progenitor dependences of neutrino flavor evolution

density profile

positions and adiabaticity of MSW resonances modulation by shock propagation (Schirato & Fuller 2002) comparison with neutrino density: collective oscillations (Pantaleone 1992; Kostelecky & Samuel 1993; Duan et al. 2006-09: Raffelt & collaborators 2006-09)

Example of 3-neutrino mixing including self-interaction neutronization burst from an O-Ne-Mg core-collapse SN

Other important issues

Convection, rotation, magnetic field asymmetry in explosion, neutrino emission & flavor evolution (Kneller, McLaughlin, & Brockman 2008)

how to put it all together?

self-consistent model of stellar evolution, core collapse, explosion, nucleosynthesis, neutrino emission & flavor evolution