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Impossible Dream of Neutrino Astronomy

"I'f [there are no new forces] -- one can conclude that there

is no practically possible way of observing the neutrino.”
Bethe and Peierls, Nature (1934)

"Only neutrinos, with their extremely small interaction cross

sections, can enable us to see into the interior of a star...”
Bahcall, PRL (1964)

"The title is more of an expression of hope than a
description of the book's contents....the observational
horizon of neutrino astrophysics may grow...perhaps in a
time as short as one or two decades.”

Bahcall, Neutrino Astrophysics (1989)

Nobel Prizes: Reines (1995), Koshiba and Davis (2002)
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Birth of Neutrino Astronomy:

Detection of Neutrinos from SN1987A
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Supernovae Are Optically Bright

Distant Supernovae Hubble Space Telescope = ACS
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Question: By how what factor does the supernova
outshine its host galaxy in neutrinos?
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Products of Stars and Supernovae
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Mechanisms of Supernovae

Thermonuclear supernova: type Ia (3<M<8)
runaway burning initiated by binary companion
MeV gamma rays from °°Ni, °°Co decays

Core-collapse supernova: types IT, Ib, Ic (M > 8)
collapse of iron core in a massive star
MeV neutrinos from proto-neutron star

Gamma-ray burst: long-duration type (M > 30?, spin)
collapse of iron core in a very massive star
significant angular momentum, jet formation
keV gamma rays from fireball
very high energy gamma rays and neutrinos?
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Stellar Initial Mass Function
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Chabrier:2003
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Which Progenitors Lead to SNII?
From ~ 8 M, to ?

SN 1987A progenitor was ~ 20 M,
. It clearly exploded and emitted neutrinos

SN 2005cs: initial mass 9 +3/-2 M,
initial mass 10 +3/-3 M,

SN 2003gd: initial mass 8 +4/-2 M,
initial mass ~ 8-9 M_,,

from the Smartt and Filippenko groups

Muno et al. (2006) argue for a neutron
star made by a ~ 40 M_,, progenitor
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Supernova Energetics

36M%s 36M

AE, = 5 R. 5 R ™ =3x10%ergs = 2 x10% MeV

core

K.E. of explosion = 10~ AE,
E.M. radiation =107 AE,
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Cooling By Neutrinos

» Collapsed hot core produces thermal neutrino
pairs of all flavors with average energy ~ 100 MeV

* At nuclear densities, the neutrinos are trapped
with a mean free path of A ~ 1 m

- The diffusion timescale is t ~ (A/c) (R/L)2 ~15s
* The luminosity L ~ E;.+/T ~ 4nR% 655 T

* Solve for T to get an average energy of ~ 10 MeV

(Note that these numbers are very rough)
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Type-IT Supernovae Emit Neutrinos
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The neutrino burst arrived before the light
SN 1987A was briefly more detectable than the Sunl
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Neutrino Emission Due to NS/BH Formation

Neutrinos before light

Huge energy release
Ez ~ GM2/R ~ 1033 erg

Low average energy
E, ~ 10 MeV

0 | e ] RN S o PR | R | S (S, e !
3 2 7

T P Very long timescale
t~104R/c

But still no direct observation of NS (or BH)
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Fresh Look at the SN 1987A Spectrum

John Beacom, The Ohio State University

Yuksel and Beacom, PRD 76, 083007 (2007)

No conflicts in dataq,
only with assumed pure
thermal spectrum
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Progress in Neutrino Astronomy:
What Do We Want to Find Out?
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Lessons So Far

* Dream big
Ask questions that astronomers can't answer

- Build big
Neutrino cross sections are small

- Wait big
Technical challenges require patience

- Win big
Important results for astronomy and physics

Why continue now?
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Multidisciplinary Aspects

Understanding supernovae is essential for:

particle physics: SNII energy loss channels
heutrino properties

nuclear physics: production of the elements
neutron star equation of state

astrophysics:  cycle of stellar birth, life, death
constraints on new sources

cosmology: supernova distance indicators
dark matter decay, annihilation

There are very good chances for collecting new
supernova neutrinos within the next five years
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Supernova Neutrino Detection Frontiers

Milky Way
zero or at most one supernova
excellent sensitivity to details
one burst per ~ 40 years

Nearby Galaxies
one identified supernova at a time
direction known from astronomers
one "burst” per ~ 1 year

== Diffuse Supernova Neutrino Background
average supernova heufrino emission
no timing or direction
(faint) signal is always therel!
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Some Key Open Questions

What is the true rate of massive star core collapses?

What is the average neutrino emission per supernova?

How much variation is there in the neutrino emission?

How does neutrino mixing affect the received signal?
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Future of Neutrino Astronomy:

Diffuse Supernova Neutrino Background
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What are the Ingredients of the DSNB?

detector supernova
capabilities rate history

.

Zmax - Rsn (5)
Jo PEAEDTE

dz,

positron spectrum heutrino spectrum
(cf. detector backgrounds)  per supernova
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Star Formation Rate

Star formation
rate is well known,
but some concern
about conversion
To supernova rate

Horiuchi, Beacom, Dwek, PRD 79, 083013 (2009)
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Supernova Rate

Kistler et al. (2008)
Smartt et al. (2008)
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Extragalactic Background Light
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Super-Kamiokande

50.000 ton Water Cherenkov Detector
11.200 20" PMTs
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Might the DSNB be Detectable?

~20 years ago: early theoretical predictions
weak limit from Kamiokande, Zhang et al. (1988)

Sato et al., 1995-- : predictions for flux

Kaplinghat, Steigman, Walker (2000)
flux < 2.2/cm2/s above 19.3 MeV

SK limit is flux < 1.2/cm2/s
This might be possiblel

Y
E =Y

—
N

-
o

>
[]
=
=t
~
c
L
=
10
N
N
~
-
8
>
~
12

Event

Two serious problems:
Predictions uncertain

Backgrounds daunting
Malek et al. (SK), PRL 90, 061101 (2003)

Now solved or solvable

John Beacom, The Ohio State University Neutrinos and Dark Matter, Madison, September 2009




Inverse Beta Decay

V,+p—>e +n

*Cross section is "large” and "spectral”

6 = 0.095(E, ~1.3MeV)® 10~ *ecm?
E =E -13MeV
e \Y
Corrections in Vogel and Beacom, PRD 60, 053003 (1999)

‘We must detect the neutron, but how?
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Add Gadolinium to SK?

N 4 GADZOOKS!

Gadolinium
Antineutrino
Detector

PMTs

Zealously
Outperforming
Old
Kamiokande,
Super!

Beacom and Vagins, PRL (2004)
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Neutron Capture

Capture on H: sigma = 0.3 barns
Egamma = 2.2 MeV

Capture on Gd: sigma = 49100 barns
Eoomma = 8 MeV
(quuivalen’r E. ~5 MeV)

=N, +NgyOpy

Capture fraction = 90%
A=4cm,t=20ps
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Can We Beat the Backgrounds?

Beacom, Vagins, PRL 93, 171101 (2004)
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What is the Neutrino Emission per Supernova?
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DSNB Spectra Based on SN 1987A Data
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DSNB robust, primarily depends on IMB data
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Range of Reasonable DSNB Spectra

DSNB is easily
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Three Main Results on the DSNB

Astrophysical (core collapse rate) uncertainties

cannot be pushed to get a substantially lower
DSNB flux

Emission (supernova neutrino yield) uncertainties
also cannot be pushed to get a substantially lower

DSNB flux

Prospects for Super-Kamiokande are excellent,
and the results will provide a new and powerful
probe of supernova and neutrino physics

John Beacom, The Ohio State University Neutrinos and Dark Matter, Madison, September 2009




R&D Update from Vagins
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Now, we’re building a dedicated Gd test facility, complete with its
own water filtration system, 50-cm PMT’s, and DAQ electronics.

This 200 ton-scale R&D project will be called —
valuating Gadolinium’s Action on Detector Systems.

Super-K Water system
EGADS Hall - I B — e S
(~2500 m~3) - — N
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240 50-cm PMT's

pii

p=t

Ry S

Selective Water+Gd 200 ton (6.5 m X 6.5m)  Transparency
Filtration System water tank (SUS304) Measurement
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A large-scale test tank will allow us to conclusively address the following questions:

These are issues which must be conclusively
studied before introducing Gd into Super-K.
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2009-10: Excavation of new underground experimental hall,
construction of stainless steel test tank and
PMT-supporting structure (completion March 2010)

2010-11: Assembly of main water filtration system,
tube prep, mounting of PMT'’s, installation
of electronics and DAQ computers

2011-12: Experimental program to address
technical issues on previous slide
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Concluding Perspectives
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Future Plans
Short-Term

» Experimentalists develop Gd plans for Super-K

- SN modelers calculate time-integrated emission

* Astronomers better measure supernova rates

Long-Term

* Detect a Milky Way supernova (Super-K or ...)
* Detect the DSNB with high statistics (Hyper-K)

* Detect supernovae in nearby galaxies (5-Mton)
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Conclusions

Understanding supernovae is crucial for astrophysics:
How do supernovae work and what do they do?
What is the history of stellar birth and death?

Detecting neutrinos is crucial for supernovae:
What is the neutrino emission per supernova?
How are neutron stars and black holes formed?

Neutrino astronomy has a very bright future:
Already big successes with the Sun and SN 1987 Al
DSNB could be the first extragalactic detectionl

Detection of the DSNB is very important:
Crucial data for understanding supernova explosions!
New tests of neutrino properties!
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CCAPP at Ohio State

The Ohio State University’s Center for Cosmology and AstroParticle Physics
= APP D,

Center for Cosmology and AstroParticle Physics

Mission: To house world-leading efforts in studies of dark energy, dark matter,
the origin of cosmic structure, and the highest energy particles in the universe,
surrounded by a highly visible Postdoc/Visitor/Workshop Program.

Postdoctoral Fellowship applications welcomed in Fall
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