Neutrino Oscillations and Nucleosynthesis in Supernovae

Takashi YOSHIDA 吉田 敬

Deparment of Astronomy, Graduate School of Science University of Tokyo

> Neutrinos and Dark Matter 2009 September 2, 2009, Madison, WI, USA

v-Process and Neutrino Oscillations

- Nucleosynthesis through neutrino-nucleus reactions
 - **The v-process** (after Woosley et al. 1990)
 - Total neutrino energy
 - Neutrino spectra
 - **Affected** by neutrino oscillations

(TY et al. 2006ab, 2008)

*r***-Process and Neutrino Self-Interactions**

Neutrino driven winds

One of promising sites for r-process

(e.g. Qian & Woosley 1996; Otsuki et al. 2000; Wanajo et al. 2001)

Neutrino reactions

 Increase in electron fraction (α-effect) (McLaughlin et al., 1996; Meyer et al. 1998)
 Suppress of r-process

> • v self-interactions (Fuller, Qian, Kneller in the morning session)

> > Flavor change at ~100km

Effect to *r*-process?

(e.g. Balantekin & Yuksel 2005)

- Light element (⁷Li, ¹¹B) synthesis through the v-process in supernovae
- Influence of neutrino oscillations (MSW effect) on light element synthesis in supernovae
- *r*-process nucleosynthesis with neutrino self-interactions in a simple wind model

Supernova Explosion Model

- ●16.2 M_☉ supernova model (Shigeyama & Nomoto 1990, ApJ 360, 242)
 - $E_{\rm exp} = 1 \times 10^{51} \, {\rm ergs}$

Temperature and density evolution

Nuclear reaction network of 291 species of nuclei

Supernova Neutrino Model

Neutrino luminosity

 $L_{\nu i}(t) = \frac{1}{6} \frac{E_{\nu}}{\tau_{\nu}} \exp\left(-\frac{t - r/c}{\tau_{\nu}}\right) \Theta(t - r/c) \quad \nu i : \nu e \mu \tau, \overline{\nu} e \mu \tau$ (after Woosley et al. 1990, ApJ 356, 272) • $\tau_{\nu} = 3 \text{ s}$ • $E_{\nu} = 3 \times 10^{53} \text{ ergs}$

Neutrino energy spectra at the neutrino sphere

• Fermi distribution $\eta_v = \mu_v / kT_v = 0$

 $(kT_{ve}, kT_{\overline{v}e}, kT_{v\mu\tau}) = (3.2 \text{ MeV}, 5 \text{ MeV}, 6 \text{ MeV})$

(e.g. TY et al. 2006ab; TY, Suzuki et al. 2008)

Neutrino-12C Reaction Cross Sections

 Neutral-current cross sections with SFO Hamiltonian Branching ratios → Hauser-Feshbach theory

(TY, Suzuki et al. 2008, ApJ 686, 448)

SN Light Element Synthesis

Mass fraction distribution of light elements 16.2 M_☉ Supernova (SN 1987A) E_v=3×10⁵³ ergs, T_{vµ,τ}=6 MeV

SN Light Element Synthesis

Light element Yields

16.2 M_{\odot} Supernova (SN 1987A) $E_{\nu}=3\times10^{53}$ ergs, $T_{\nu\mu,\tau}=6$ MeV

Contribution of ¹¹B from SNe suggested from Galactic chemical evolution models

(e.g., Fields et al., 2000; Ramaty et al. 2000)

Neutrino Oscillation Parameters

Neutrino oscillation parameters

Squared mass differences

 $\Delta m^2 31 = \pm 2.4 \times 10^{-3} \text{ eV}^2, \Delta m^2 21 = 7.9 \times 10^{-5} \text{ eV}^2$

(Based on SK 2004; SNO 2004; KamLAND 2005)

• Mixing angles $\implies \sin^2 2\theta_{12} = 0.816, \sin^2 2\theta_{23} = 1$ $10^{-6} \le \sin^2 2\theta_{13} \le 0.1$

(Based on CHOOZ 2003; SK 2004; SNO 2004; KamLAND 2005)

Spectrum Change by Neutrino Oscillations

Supernova neutrinos $\sim < < c_{\nu e} > < < c_{\nu \mu \tau} >$

10 MeV, 16 MeV, 19 MeV

Neutrino oscillations change neutrino flavor \longrightarrow Mass hierarchy, the mixing angle θ_{13}

Normal mass hierarchy, sin²2θ13=0.01

T. Yoshida, Neutrinos and Dark Matter 2009, September 2, 2009

Mass Fraction Distribution of ⁷Li and ¹¹B

• Normal mass hierarchy; sin²2013=0.01

*E*_v=3×10⁵³ ergs, *T*_{νμ,τ}=6 MeV Increase in the mass fractions of ⁷Be & ¹¹C in the He layer Increase in the rates of ⁴He(ve,e⁻p)³He,¹²C(ve,e⁻p)¹¹C ⁷Be & ¹¹C yields Increase by factors of 2.5 & 1.4

7Li/11B Abundance Ratios

⁷Li and ¹¹B yields Increase by neutrino oscillations

⁷Li/¹¹B ratio

Set off of uncertainties in yields by SN neutrino uncertainties

• N(⁷Li)/N(¹¹B) as a constraint for oscillation parameters

Neutrino Self-Interactions

Neutrino spectrum change by v self-interactions

2 flavor model Single angle approximation Inverted mass hierarchy $\Delta m^2 = -2 \times 10^{-3} \text{ eV}^2$, $\sin^2 2\theta = 10^{-5}$

 $L_{v\alpha} = 5 \times 10^{50} \text{ ergs s}^{-1}$ $(T_{ve}, T_{\overline{v}e}, T_{vx})$ = (4 MeV, 5 MeV, 8 MeV)

Spectrum split for v_e Spectrum conversion for \overline{v}_e

• Change of v_e and \overline{v}_e spectra

Increase in Ye in neutrino driven winds
Do v self-interactions affect r-process nucleosynthesis?

Constant Entropy Wind Model

• Relation of $S, \dot{m}, L_{v\alpha}, \langle \varepsilon_{\bar{v}e} \rangle$ from Qian & Woosley (1996) $S/k_{\rm B} \sim 235 \ C^{-1/6} L_{\bar{v}e}^{-1/6} \langle \varepsilon_{\bar{v}e} \rangle^{-1/3} R_6^{-2/3} (M/1.4M_{\odot})$

 $dm/dt \sim 1.14 \times 10^{-10} \ C^{5/3} L_{\bar{\nu}e}^{5/3} \langle \epsilon_{\bar{\nu}e} \rangle^{10/3} R_6^{5/3} (M/1.4M_{\odot})^2 \ M_{\odot} \ s^{-1}$ Fimo scale of temperature decrease

• Time scale of temperature decrease

~ 0.01 - 0.1 s

*r***-Process Nucleosynthesis**

r-process suppressed by *v*-reactions (α-effect) (McLaughlin et al., 1996; Meyer et al. 1998)

Reduction of the 3rd peak height
 Abundances of the 2nd peak elements enhance.

 v self-interactions enhance the supression.
 Abundances beyond the 2nd peak are reduced.

*r***-Process Nucleosynthesis**

Slower winds

 \Rightarrow Influence of v-reactions (α -effect) becomes large.

v self-interactions enhance the suppression.
 More reduction of abundances beyond the 2nd peak

Ye Change

• Ye increases to 0.41 (fast) and ~0.43 (slow) by v-reactions. $n(v_e,e^-)p$

Spectrum split of v_e and v_x by v self-interactions

Enhancement of Ye increase by about 20% The effect is seen but it is not drastic.

Effect to Other Elements

• Light elements (⁷Li and ¹¹B)

> Affected by v self-interactions and MSW effect

Yields depend on mass hierarchy and θ_{13}

- ¹⁹F, ⁵⁵Mn, ¹³⁸La, and ¹⁸⁰Ta
 - Increase in their yields by v self-interactions

Summary

 Light element synthesis through the v-process
 ⁷Li and ¹¹B are main products ⁴He(v,v'p)³H, ⁴He(v,v'n)³He, ¹²C(v,v'p)¹¹B, ¹²C(v,v'n)¹¹C

 Light element synthesis with neutrino oscillations in SNe
 Enhancement of the contribution from charged-current reactions

 $\longrightarrow N(^{7}Li)/N(^{11}B)$ as a constraint for oscillation parameters

r-process with v self-interactions in wind model
 r-process suppressed by v-reactions (α-effect)
 v self-interactions enhance Ye increase but not drastic.

Collaborators

Astrophysicists

Toshitaka Kajino (National Astronomical Observatory of Japan)
 Dieter H. Hartmann (Clemson University)

Nuclear physicists

- Toshio Suzuki (Nihon University)
- Satoshi Chiba (Japan Atomic Energy Agency)
- Particle physicists
- Akira Takamura (Toyota National College of Technology)
- Keiichi Kimura (Nagoya University)
- Hidekazu Yokomakura (Nagoya University)