

Highlights of VERITAS Results

M. Schroedter* for the VERITAS Collaboration#

* Iowa State University, # http://veritas.sao.arizona.edu

VERITAS Collaboration

~ 100 Scientists

22 Institutions in4 Countries

Support from:

Smithsonian Inst. U.S. NSF U.S. DOE STFC (U.K.) NSERC (Canada) SFI (Ireland)

U.S.

- Adler Planetarium Argonne Nat. Lab Barnard College DePauw Univ. Grinnell College Iowa St. Univ.
- Purdue Univ. SAO UCLA UCSC Univ. of Chicago Univ. of Delaware

Univ. of Iowa Univ. of Massachusetts Univ. of Utah Washington Univ. Canada McGill Univ.

U.K. Leeds Univ.

Ireland Cork Inst. Tech. Galway-Mayo Inst. N.U.I. Galway Univ. College Dublin

+ 25 Associate Members

 νs and DM, Madison, 2009

Martin Schroedter

Outline

Technique

- VERITAS Telescope Array
 - Layout, technical details, performance
- Science Highlights
 - Extragalactic
 - Discovery of Starburst Galaxy M82
 - Radio Galaxy M87
 - Galactic Sources
 - Boomerang
 - Dark Matter Searches
- VERITAS Upgrade Plans

Atmospheric-Cherenkov Technique

Upper atmosphere

Detection area: 50,000 m² larger than football field! Energy: 0.1-50 TeV Energy resolution: ~18% Angular res.: <0.12°

NEW VERITAS Telescope Array

 νs and DM, Madison, 2009

Results from VERITAS

Technical Details

Telescope (x 4) 12-m diameter Davies-Cotton f 1.0, 110 m² area

Camera (x 4) 499 PMTs, 3.5° FOV

Mirror Facets (x 350) Reflectivity ~ 88% (Recoated every 2 years) Cosmic-ray event

FADC Readout 500 Msps, dual-gain

3-Level Trigger

Pixel, Telescope, Array Deadtime ~10% @ 250 Hz

OLD VERITAS Performance

vs and DM, Madison, 2009

Results from VERITAS

Martin Schroedter

Outline

Technique

- VERITAS Telescope Array
 - Layout, technical details, performance
- □ Science Highlights
 - Extragalactic
 - Discovery of Starburst Galaxy M82
 - Radio Galaxy M87
 - Galactic Sources
 - Boomerang
 - Dark Matter Searches
- VERITAS Upgrade Plans

VERITAS Science Highlights

Extragalactic Sources

- Active Galactic Nuclei
 - BH accretion powers relativistic jet & VHE particle acceleration.
 - Science goals: emission mechanism, jet physics, BH engine.
 - Sources of UHE cosmic rays?
 - Double-peaked SED
 Simultaneous MWL data crucial.
- a) Blazars (10)
 - Highly variable emission: 3 min
 - Probe EBL from spectra via: $\gamma_{VHE} + \gamma_{EBL} \rightarrow e^+ e^-$
- b) Radio Galaxies: M87, Cent-A
 - Closer, so structure can be better resolved.
- Starburst Galaxy: M82

M82: Starburst Galaxy

- M82: Prototype starburst galaxy
 - Interacting with group of galaxies over hundreds of Myrs.
 - Tidal forces → active starburst region (HST shows > 200 massive star clusters.
 - SMBH < 3 x 10^7 M_{sun}, no AGN activity.
- Starburst Region
 - High star formation and SNR rate.
 - High CR density (from radio emission).
 - High gas density ~ 150 #/cm³
 - γ-rays from cosmic rays (p⁺ and e⁻) interacting with gas and B-field Clues on origin of CR's.
 - Previous limits < 10% Crab (HEGRA, Whipple). Also limits on NGC 253.

M82: Starburst Galaxy

- VERITAS Data & Analysis
 - 2007-09: 137 h live time.
 Only dark time (no moonlight).
 - "Hard cuts" from *a priori* study of Crab data at similar zenith (θ ~ 40°).
- Detection !
 - 5.0 σ excess (pre-trials), 4.8 σ (post-trials). Consistent with point source at M82.
 - Many systematic checks of analysis procedure, background method, and potential biases. (E > 700 GeV)
 - Among weakest VHE sources ~0.9% Crab.
- Interpretation
 - First detection of an extragalactic VHE source not clearly associated with AGN activity.
 - Consistent with predictions, general nature of CR interactions.

"Discovery of Gamma-ray Emission from a Starburst Galaxy," Acciari et al., submitted to Nature.

M82: Starburst Galaxy

M87: Radio Galaxy

M87: Radio Galaxy

Outline

Technique

- VERITAS Telescope Array
 - Layout, technical details, performance
- Science Highlights
 - Extragalactic
 - Discovery of Starburst Galaxy M82
 - Radio Galaxy M87
 - Galactic Sources
 - Boomerang
 - Dark Matter Searches
- VERITAS Upgrade Plans

Galactic TeV Sources

<u>Extragalactic</u>

Blazars, Radio galaxies

Starburst galaxy

need v-signature!

fronts, colliding winds, superbubbles

Hope to pin down CR Origin:

Boomerang/PSR J2229+6114

Energetic pulsar + wind nebula discovered by EGRET

- Age ~ 10,000 years
- Period: ~50 ms
- E-dot = 2.2x10³⁷ erg/s
- Distance ~800 pc (Kothes et al.)
- Likely associated with large SNR G106.3+27
- Fermi-LAT Bright Source list
- Emission at ~35 TeV reported by Milagro (Abdo et al., 2009)

vs and DM, Madison, 2009

Boomerang/PSR J2229+6114

Declination (deg)

61.3

61.2

61.1

61

60.9

60.8

60.7

60.6

60.5

VERITAS Observations

- Observations overlap radio shell
- 33 h, 6.0σ post-trials
- Flux ~5% Crab above 1 TeV
- TeV emission is extended
 - Spans a 0.4° x 0.6° region
 - Peak is 0.4° from pulsar
 - Overlaps region of high CO density

V. A. Acciari et al., sub. to ApJ.

PSF 0 Color map: VERITAS Circle: Fermi error circle Dot: Pulsar position Black: 1.4 GHz DRAO Purple lines: CO

250

200

150

100

50

0

-50

Boomerang/PSR J2229+6114

Energy spectrum

- Integrate over 0.320 radius centered on emission peak
- Well fitted by pure power law $\Gamma = 2.3 \pm 0.3$ stat ± 0.3 sys,

Extension of spectrum is consistent within errors with Milagro point at 35 TeV

□ If associated with pulsar Favors hadronic origin of VHE γ ? $p_{CR} + p_{ambient} \rightarrow \pi^0 \rightarrow \gamma \gamma$

Outline

Technique

- VERITAS Telescope Array
 - Layout, technical details, performance
- Science Highlights
 - Extragalactic
 - Discovery of Starburst Galaxy M82
 - Radio Galaxy M87
 - Galactic Sources
 - Boomerang
 - Dark Matter Searches
- VERITAS Upgrade Plans

VERITAS Dark Matter Searches

Complementary approaches

- Accelerators (Tevatron, LHC,...)
- Underground labs (CDMS, COUPP,...)
- Astrophysical DM annihilation

Dark matter annihilation

- WIMP candidates (KK, SUSY)
- Unique HE γ-ray signature
 50 GeV 10 TeV
- Direct link to galactic halo structure

 $\gamma \text{ flux} \propto \left| \frac{\langle \sigma v \rangle}{8 \pi m_{\chi}^2} \right| \times \rho_{\chi}^2$

10

-8

6

0

-2

-4

Significance

VERITAS Dark Matter Searches

Source Characteristics

- High mass/light ratio > ~100
- Low astrophysical background (low baryonic mass)
- Very near

VERITAS DM Program

- Huge collection area over Fermi: ~10,000m²
- Comprehensive program, 7% of observing time
 - Dwarf Galaxies (e.g. Draco...) Local Galaxies (e.g. M32, M33) Globular Clusters (e.g. M5) Galaxy Clusters (e.g. Coma)

So far, no Detections → Limits on 7 candidate sources

Dwarf-Sph <100 kpc	95% CL UL Flux at 1 TeV (Crab)
Draco	0.3%
Ursa Minor	0.5%
Willman I	1%
Bootes I (200kpc)	0.5%

Draco

 νs and DM, Madison, 2009

VERITAS Dark Matter Limits

Outline

Technique

- VERITAS Telescope Array
 - Layout, technical details, performance
- Science Highlights
 - Extragalactic
 - Discovery of Starburst Galaxy M82
 - Radio Galaxy M87
 - Galactic Sources
 - Boomerang
 - Dark Matter Searches
- □ VERITAS Upgrade Plans

- VERITAS operates very well with excellent sensitivity.
- With the excitement in the field and the unique capabilities of Fermi, we want to improve VERITAS.

Plans to improve the sensitivity and to extend the energy range are ongoing:

- 1. Improved optical point spread function accomplished
- 2. Relocating telescope T1 \leftarrow accomplished
- 3. Upgrading cameras with high efficiency PMTs ← proposed
- 4. New trigger system ← proposed

Summary

- **U** VERITAS is the most sensitive γ -ray detector between 0.1 30 TeV.
- Major scientific highlights
- Detection of 5 new blazars: 1ES 0806+524, W Com (IBL), 3C 66A (IBL), RGB 0170+541, PKS 1424+240.
- Detection of starburst galaxy: M82.
- Truly simultaneous MWL campaign pin-points VHE engine (M87).
- Detection of 2 new PWN/SNR: G106.3+2.7 and G54.1+0.3
- Best measurements to date of IC 443 and Cas-A.
- □ VERITAS upgrade will significantly improve sensitivity.
- Future discoveries driven by closer collaboration between GeV, TeV γ-ray and ν telescopes.

Backup: IBL 3C66A

3C 66A: Distant Blazar

3C 66A

- IBL at nominal z=0.44.
- Seen by EGRET and Fermi-LAT.
- VERITAS flare discovery, 2008 21σ, 33h, E_{th} ~ 120 GeV. (ATEL #1753, ApJ 693, L104).
- Soft spectrum: Γ = 4.1 ± 0.4_{stat} ± 0.6_{sys} (due to EBL ?).
- Joint Fermi-VERITAS study; SSC model disfavored (see L. Reyes' talk).

ICRC Talk: J. Perkins OG 2.3 (#0490)

ICRC Talk: L. Reyes OG 2.3 (#0637)

- MAGIC reported 3C66B 0.12° away.
 5.4σ in 54 h from 2007 data.
- Source confusion?
 VERITAS excludes 3C66B at 4.3σ.