

Potential sources of v's

GALACTIC

EXTRAGALACTIC

Supernova remnants

Pulsars

Microquasars

Indirect dark matter signal

Relic WIMPs captured in celestial bodies $\chi \chi$ self-annihilations into c, b, t quarks, τ leptons or W, Z, H bosons (prompt)
\rightarrow significant
high-energy v flux
Potential $\chi \chi \rightarrow$ v sources: Sun, Earth, Galactic Centre

AGNs
৬. Loucatos IKトU, CEA-Saclay

Other DM candidates

- Axions, axinos
- Primordial $\mathrm{BH}>$ or $<\mathrm{m}_{\text {多 }}$

Ed Witten,

Physics landscape
away from the HE frontier, CERN 09.

- Particles with m_{PI} or $\mathrm{m}_{\mathrm{GUT}}$ in cosmic rays
- Gravitinos
- KK particles $(\rightarrow v)$

See also
D. Cline,
this conference

Parameter space scans (Darksusy)

- Neutralino: natural WIMP dark matter candidate in SUSY models, like the MSSM.
- Extensive scans of the MSSM model parameters both in mSUGRA models and low-energy phenomenological MSSM-7 and MSSM-9 models (in these models, one specifies the supersymmetric parameters at the electroweak scale instead of at the GUT scale as in mSUGRA

mSUGRA

Minimal Supergravity:5 free parameters. mSUGRA is a GUT including gravity, parameters defined at the GUT scale $\left(10^{16} \mathrm{eV}\right)$. All couplings converge at this scale, free parameters:

- common masses for scalars $\left(m_{0}\right)$ and gauginos ($m_{1 / 2}$)
- common trilinear coupling constant A_{0}
- ratio of vev's of the 2 Higgs fields $\tan (\beta)$ $=V_{\text {top }} V_{\text {bottom }}$.
- Higgsino mixing parameter μ is fixed except for its sign (5th parameter).

From these parameters at the GUT scale, masses and couplings at the EW scale can be calculated using renormalization group equations (RGE), with ISASUGRA or SuSpect [2].. Depending on the parameters chosen, the LSP, stable from R-parity conservation, (-1 for superpartners and 1 for standard particles), could be the lightest of four neutralinos

ANTARES: neutralino annihilations in the Sun

Study of neutralino Dark Matter sensitivity within SUSY mSUGRA framework
Random walk scan within mSUGRA parameter space :
$0<\mathrm{m}_{1 / 2}<2000 \mathrm{GeV}$
$0<\mathrm{m}_{0}<8000 \mathrm{GeV}$
$0<\tan \beta<60$
$-3 \mathrm{~m}_{0}<\mathrm{A}_{0}<3 \mathrm{~m}_{0}$

Calculated with DarkSUSY and ISASUGRA (RGE code) with $\mathrm{m}_{\text {top }}=172.5 \mathrm{GeV}$

Integrated neutrino flux for $\mathrm{Ev}>10 \mathrm{GeV}$

Includes v oscillation effects inside and outside the Sun
S. Loucatos IRFU, CEA-Saclay

Capture and annihilation

$$
\frac{d N}{d t}=C_{C}-C_{A} N^{2}-C_{E} N
$$

capture $\left(C_{C}\right)$, annihilation $\left(C_{A}\right)$, and evaporation $\left(C_{E}\right)$ (negligible)

$$
\text { Annihilation rate: } \begin{aligned}
\Gamma_{A} & \equiv \frac{1}{2} C_{A} N^{2}=\frac{1}{2} C_{C} \tanh ^{2}(t / \tau) \\
\tau & \equiv 1 / \sqrt{C_{C} C_{A}},
\end{aligned}
$$

$$
\begin{aligned}
& t=t^{\odot} \simeq 4.5 \cdot 10^{9} \text { years } \quad \text { Equilibrium for: } \quad t^{\odot} / \tau \gg 1 \\
& \Rightarrow \mathrm{dN} / \mathrm{dt}=0, \quad \Gamma_{A}=\frac{1}{2} C_{C} . \quad \text { Depends only on scattering }
\end{aligned}
$$

$$
\begin{array}{ll}
\text { From a (non)observed } \mu \text { flux } \rightarrow \boldsymbol{\sigma} \text { SD, SI } & \sigma^{\mathrm{SI}}=\kappa_{f}^{\mathrm{SI}}\left(m_{\chi}\right) \Phi_{\mu}^{f} \quad \sigma^{\mathrm{SD}}=0 \\
& \sigma^{\mathrm{SD}}=\vdots \kappa_{f}^{\mathrm{SD}}\left(m_{\chi}\right) \Phi_{\mu}^{f} \quad \sigma^{\mathrm{SI}}=0
\end{array}
$$

A. Gould, Astrophys. J. 321 (1987) 571
G. Jungman, M. Kamionkowski and K. Griest, Phys. Rept. 267 (1996) 195
G. Wikstrom and J. Edsjo, JCAP 04, 009 (2009).

Predicted fluxes

$\mathrm{F}_{\text {Sun }}>\mathrm{F}_{\text {Earth }}, \mathrm{F}_{\mathrm{GC}}$

MSSM:

SUN
Bertin, E.N, Orloff 02

EARTH

GALACTIC CENTER (NFW)
Bertone, E.N, Orloff, Silk 04

Detection principle

Main detection channel: charged v_{μ} interaction giving an ultrarelativistic μ Energy threshold: 10 GeV

Selection of neutrino events

Upgoing events dominated by the tail of badly reconstructed atmospheric muons
Λ : maximum likelihood of the track fit

Atmospheric muons and neutrino-induced muons

Example of a reconstructed down-going muon, detected in all 12 detector lines

Example of a reconstructed
up-going muon (i.e. a neutrino candidate) detected in $5 / 12$ detector lines

S. Loucatos IRFU, CEA-Saclay

Effective area of the detector

Low-energy performance

Trigger : Events with hits on at least 5 storeys in whole detector

Detection : Selected after 3D reconstruction with quality cuts

ANTARES Low-Energy Effective Area

Assume 60 kHz of optical background mean rate

ANTARES Neutrino Effective Area in the low-energy regime

S. Loucatos IRFU, CEA-Saclay

Neutrino spectra from neutralino annihilations

Neutrinos from $\chi \chi \rightarrow$ WW (hard spectrum) are more energetic and easier to detect

Neutralino annihilations in the Sun in mSUGRA

Sensitivity calculated for
Detection rate with ANTARES and KM3NeT detectors 3 years of data taking

Background from atmospheric neutrinos and misreconstructed atmospheric muons within 3° radius search cone around the Sun

mSugra models favoured by WMAP

- 90% CL excudable by ANTARES
- 90% CL excludable by KM3NeT
- not excludable
mSugra models disfavoured by WMAP
- 90% CL excludable by ANTARES
- 90% CL excludable by KM3NeT
- not excludable

Neutralino annihilations in the Sun in mSUGRA

mSugra Parameter Space

mSugra models favoured by WMAP

- 90% CL excudable by ANTARES
- 90% CL excludable by KM3NeT
- not excludable
mSugra models disfavoured by WMAP
- 90% CL excludable by ANTARES
- 90% CL excludable by KM3NeT
- not excludable
S. Loucatos IRFU, CEA-Saclay

Muon flux from neutralino annihilations in the Sun

Used for comparison to other neutrino experiments

Site dependent quantity (v propagation through Earth, target density at detector...)

Derived from neutrino flux through $v \rightarrow \mu$ conversion rate extracted from
DarkSUSY for different m_{x}

Comparison to Direct Detection sensitivity

Comparison to direct detection experiments sensitive to spin independent WIMP-nucleon cross section ($10^{-7} \mathrm{pb}=10^{-43} \mathrm{~cm}^{2} \Leftrightarrow .1$ ev/kg/day)

Spin dependent scattering limits (direct search) not yet low enough to put constraints on mSUGRA Dark Matter => more interesting !

mSugra models favoured by WMAP

- 90% CL excudable by ANTARES
- 90% CL excludable by KM3NeT
- not excludable
mSugra models disfavoured by WMAP
- 90% CL excludable by ANTARES
- 90% CL excludable by KM3NeT

Prediction: $\sigma^{\text {SD }}>\sigma^{\text {SI }}$

Baltz \& Gorkialo, JHEP 0410:052,2004. (WMAP-II update)
See M.Szydagis, this conference

Search for neutrino events coming from the Sun

Expected sensitivity and background in a cone around the Sun for the ANTARES 5-line upgoing neutrino sample

Good agreement for background estimation from MC and full sky data set

Size of search cone optimized on MC as a function of $\mathrm{M} \chi$ and hard/soft spectrum

First ANTARES limit on v / μ flux from the Sun

Icecube, Amanda

Phys.Rev.Lett. 102:201302,2009, C. Rott, ICRC 09

Spin-dependent WIMP-proton cross-section

DATA listed top to buttom on plot

- FICASSOSD-proton (205)
-CDMS Soodan200+2008Ge SD-proton
XENONLO SD-proton
COUPP20085D-proton
DAMALLBRA 2088 skigma SDp, with ionchanneling
KIMS 2077-340) Lg dajas C:S 50 -proton
Ellis etal., Spindep. sigmain MSSM

Spin-dependent WIMPnucleon cross-section very difficult to access in direct detection experiments

Solar	Earth	Halo
Neutrino Flux, Scattering cross-section	Neutrino Flux, ?	Neutrino Flux, Selfannihilation cross-section
Muon neutrinos	Muon neutrinos	Muon neutrinos, Cascades
Background off-source onsource	Background simulations	Background off-sourceonsource
Excess	Excess	Anisotropy
IceCube (+ Deep Core)	IceCube (+ Deep Core)	DeepCore (+ IceCube)

S. Loucatos IRFU, CEA-Saclay

IC track selection

FIG. 1 (color online). The product $Q_{1} \times Q_{2}$ of the output values of the two SVMs for the experimental data, a simulated signal ($m_{\tilde{\chi}_{1}^{0}}=1000 \mathrm{GeV}$, hard spectrum) and the background. The background has been scaled to match the data rate and it is shown divided into three components: atmospheric neutrinos and single and coincident atmospheric muons.

Search for an excess from the sun

Search for an excess neutrino flux from the direction of the sun
Analysis performed with the IceCube 22 string detector and 104 days of livetime (when the
sun below the horizon)

July 8, 2009

Cold Dark Matter candidate particle is assumed to be the LSP (neutralino) in MSSM, R-parity conserving scenario Neutralino is a Majorana particle and self-annihilates Consider two annihilation channels:

- Hard: $\chi \chi \rightarrow \mathbf{W}^{+} \mathbf{W}^{-} \rightarrow v v$
- Soft: $\chi \chi \rightarrow \mathbf{b b} \rightarrow v \nu$

Consider 7 neutralino masses from 50 GeV to 5 TeV

Solar wimp limits

- Under the assumption of equilibrium condition in the Sun, a limit on the WIMPNucleon cross-section can be obtained
- For spin-dependent couplings, IceCube's sensitivity is about 2-orders of magnitude better than direct searches
- Look for an excess of (muon) neutrinos in the direction of the sun
- No evidence for a signal observed
- Upper limits on muon flux from neutralino annihilations in the Sun

S. Loucatos IRFU, CEA-Saclay

σ ${ }^{\text {SD }}$ limit

DATA listed top to bottom on plot
ceccube 0009 indirect 51 assuming
lceCube 2009 indirect Sl (assuming annitilation to b-bbar)
lceCube 2009 indirect Sl (assuming annihilation to W<sup $>+</$ sup $>$ W<sup $>-</ s$ ZEPLIN 111 (Dec 2008) IEsult
XENON10 2007 (Net 136 (sis) +2008 Ge
Trotta et al 2008, CMSSM Bayesian: 68% contour
Trotta et al 2008, CMSSM Bayesian: 95\% contour mos 200 ye al

- Under the assumption of equilibrium condition in the Sun (and the assumption that capture is dominated by spinindependent cross-section), a limit on the WIMP-Nucleon cross-section can be obtained
- IceCube limits are competitive with direct detection
experiments at WIMP masses, where IceCube is sensitive

Earth wimps

- Dark Matter could be clustered in the centre of the Earth
- Annihilation signal might be observable in vertically up-going events
- AMANDA analysis on-going
- IceCube analysis on-going
- Understanding of low energy vertical tracks extremely important

Earth wimps limit

Beginning with 40 string data, IceCube lowered the multiplicity 8 trigger threshold to 5 applying a string trigger

String Trigger:

5 DOMs hit within a series of 7 DOMs within a time window of 1500ns

Halo wimps

A neutrino flux from annihilations in the Milky way halo might be observable as neutrino flux anisotropy.
Use up-going tracks (from the Northern hemisphere) to have access to TeV range neutrinos.

Coverage Zenith angle band $\left[0^{\circ}, 10^{\circ}\right]$

Example: 10 degree zenith angle band mapped in galactic coordinates

S. Loucatos IRFU, CEA-Saclay

Super-Kamiokande detector

-Large water Cherenkov detector located Kamiokamine, Japan (1000 m under ground). T. Tanaka, ICRC 09.
.50kt water inside the tank(22.5 kt fiducial)
. 42 m height, 39.3 m diameter
-2m outside detector (OD) for cosmic muon veto

20" PMT with acrylic cover

Upward muons

$$
A_{\text {eff }}(\mu)=1200 m^{2}
$$

-SKI~III upmu samples

(3149.2 days)

- $\operatorname{Cos} \theta_{\text {Sun }}=1$ means the direction of the Sun

Data and MC are consistent.

```
Red:Atmospheric v MC (with oscillation) \(\sin ^{2} 2 \theta=1\), \(\Delta m^{2}=2.5 \times 10^{-3} \mathrm{eV}\) Cross: data
```

S. Loucatos IRFU, CEA-Saclay

WIMP mass (GeV)	$\theta_{\text {Sun }}$ (deg.)
10	30

For each M_{x} a cone for 90% signal containment is defined.
No excess $\rightarrow 90 \%$ limit

100	10
1000	6
10000	5

$$
\mathrm{cm}^{-2} \mathrm{sec}^{-1}=10^{10} \mathrm{~km}^{-2} \pi 10^{7} \mathrm{y}^{-1}=\pi 10^{17} \mathrm{~km}^{-2} \mathrm{y}^{-1}
$$

Soft channel
Hard channel

S. Loucatos IRFU, CEA-Saclay

SK $\boldsymbol{\sigma}^{\text {SD }}$ result

Compilation

T. Montaruli, ICRC 09.

SD cross section

UED - Kaluza Klein

K. Han, ICRC 09.

LKP $=\mathrm{B}^{(1)}$ 1st excitation of the KK photon

TABLE I
POSSIBLE CHANNELS FOR THE PAIR ANNIHILATION OF $B^{(1)} B^{(1)}$ AND BRANCHING RATIOS OF THE FINAL STATES. FIGURES TAKEN FROM [20].

Annihilation Process	Branching ratio
$B^{(1)} B^{(1)}$	$\rightarrow \nu_{e} \bar{\nu} e, \nu_{\mu} \bar{\nu}^{\prime} \mu, \nu_{\tau} \bar{\nu}_{\tau}$
0.012	
	$\rightarrow e^{+} e^{-}, \mu^{+} \mu^{-}, \tau^{+} \tau^{-}$
	$\rightarrow u \bar{u}, c \bar{c}, t \bar{t}$
	$\rightarrow d \bar{d}, s \bar{s}, b \bar{b}$

Inert Doublet Model

(Barbieri et al 2006, Ma 2006)

$\star a d$ hoc model and does not address any deep issue (hierarchy problem).

* a very simple extension of the Standard Model and rich phenomenology.
$\star H_{0}$ dark matter phenomenology intertwined with that of the Higgs particle.
\star few parameters (7), effective model

Standard Model +2 Higgs doublets: H_{1} and H_{2}
A Z_{2} symmetry (to avoid FCNC) : $H_{1} \rightarrow H_{1}$ and $H_{2} \rightarrow-H_{2}$.
Standard Model fields are even under Z_{2}
Assume Z_{2} is not broken,i.e. H_{2} does not develop a vev: $\left\langle H_{2}\right\rangle=0$
Potential: $V=\mu_{1}^{2}\left|H_{1}\right|^{2}+\mu_{2}^{2}\left|H_{2}\right|^{2}+\lambda_{1}\left|H_{1}\right|^{4}+\lambda_{2}\left|H_{2}\right|^{4}+$

$$
\lambda_{3}\left|H_{1}\right|^{2}\left|H_{2}\right|^{2}+\lambda_{4}\left|H_{1}^{\dagger} H_{2}\right|^{2}+\frac{\lambda_{5}}{2}\left[\left(H_{1}^{\dagger} H_{2}\right)^{2}+h . c .\right]
$$

$S U(2) \times U(1)$ symmetry broken by $\left\langle H_{1}\right\rangle=\frac{v}{\sqrt{2}}$
Higgs mass $M_{h}^{2}=-2 \mu_{1}^{2} \equiv 2 \lambda_{1} v^{2}$
$\rightarrow 3$ new scalar particles : H^{+}charged : $M_{H^{+}}^{2}=\mu_{2}^{2}+\lambda_{3} v^{2} / 2$

$$
A_{0} \text { neutral pseudo : } M_{A_{0}}^{2}=\mu_{2}^{2}+\left(\lambda_{3}+\lambda_{4}-\lambda_{5}\right) v^{2} / 2
$$

$$
H_{0} \text { neutral }: M_{H_{0}}^{2}=\mu_{2}^{2}+\left(\lambda_{3}+\lambda_{4}+\lambda_{5}\right) v^{2} / 2
$$

$$
H_{0} \equiv \text { scalar WIMP dark matter candidate }
$$

Summary and Outlook

- . Search for neutitrino signals from Dark Matter annihilation În the Sün
\therefore performed by all telescopes
- SUSY Dark Matter can próduce interesting signals - Stringent limits for Spin-Dependent \mathcal{X}-p cróss, section, (Amąnda IC, SK)
. ISUGRA parameter space reachable. Promising sensitivities of
* KM3"IC
-Complementarity of neutrino telescopes with direct detection . and LHCA
- Sensitivity to other SUSY models (pMSOM, AMSB, ...) or
* . . Dark Matter candidatès is bping studied (KK excitations ...):...
- "First limit oñ Earth signal from Amanda
' 'Search towards Galactic Ceptre in progress

