The Race to Find the Higgs

Mark Kruse <u>Duke</u> University PHENO 07, Prelude to the LHC Madison WI, 7 May 2007

Why we're looking for "Higgs"

- The electroweak gauge bosons are massive ($M_W = 80 \text{ GeV}, M_Z = 91 \text{ GeV}$) \Rightarrow somehow, the electroweak symmetry is broken
- The "Higgs mechanism" can accomplish this:
 - Interaction of a scalar "Higgs field" with the massless fields of the electroweak theory can cause electroweak symmetry breaking (EWSB) and endow the W[±] and Z⁰ bosons with mass
 - -> There remains a massive spin-0 particle: the Higgs boson
 - Same mechanism can be used to generate lepton and quark masses

- In the Standard Model, the Higgs boson is the only undiscovered particle, making it the most sought after particle in HEP
- But why believe in the SM Higgs ?
 - There is no experimental evidence significantly contradicting the SM, within which a single Higgs potential provides the necessary EWSB for mass generation
 - Therefore, although there are good reasons to believe in alternative models, the SM Higgs provides a stable target, and more complicated models typically include something that's SM-like anyway

This talk....

Will concentrate on the SM Higgs

 status and prospects at the Tevatron
 prospects at the LHC
 Will not give a detailed check-list of analyses but rather try to convey what is necessary for discovery

• Hope to have a little time to say something about MSSM Higgs searches, and other models

What we currently know about the SM Higgs

• If the SM Higgs exists, we'll find it soon, either at the Tevatron and/or LHC

M. Kruse, PHENO 2007

Tevatron vs. LHC

- 1.96 TeV p-p collider
- 396 ns between bunches
- Has delivered ~2 fb⁻¹ of data since 2002, and steadily accumulating more:
 - regularly see L > $2x10^{32}$ cm⁻²s⁻¹
 - expect 6-8 fb⁻¹ by 2009

- 14 TeV p-p collisions
 (c-v ~ 10 km/h !!)
- Expect to "turn on" 2008
- ~25 ns between proton bunches
- Low luminosity running (10³³ cm⁻²s⁻¹) to accumulate ~30 fb⁻¹ by 2011
- Will eventually record ~100 fb⁻¹ per year

Higgs Production

Tevatron

LHC

- Single Higgs production dominates
- Production in association with a vector boson order of magnitude less, but provides most sensitivity to low-mass searches

gg→H two orders of magnitude greater
 qq→VH order of magnitude greater
 Vector boson fusion important

Higgs decay

Then, event selection will further reduce signal with still more work needed to discriminate from the large backgrounds

Backgrounds for light Higgs

- For low-mass searches at the Tevatron crucial to "tag" jets from b's to reduce the huge V+jets background
 - Most powerful method is to measure secondary vertices from B decay
 - Efficiency to tag at least one b-jet ~60%
 - → False tag rate ~0.5%
 - Reduces backgrounds by at least an order of magnitude
 - Relies heavily on Si detector performance
 - Other algorithms also exist (e.g. SLT)
 - Development of NN b-taggers could be important for Higgs discovery
- At the LHC making any use of $H \rightarrow bb$ extremely difficult
 - $H \rightarrow \gamma \gamma$ most sensitive channel for light Higgs
 - Major background from prompt γ 's, but M_{$\gamma\gamma$} narrow

Higgs discovery at the LHC

- Expect:
 - With ~1 fb⁻¹ (in first few months of running):
 - discovery if Higgs mass around 160 GeV
 - With ~10 fb⁻¹ (after 1-2 years):
 - discovery or exclusion of SM Higgs over entire mass range
- A light Higgs makes discovery tougher at the LHC

M. Kruse, PHENO 2007

Can the Tevatron Tortoise beat the LHC hare ?

An important reminder:

- With dedication and ingenuity we can surpass our expectations
- A recent example is the top mass

Where we are now: * CDF combined: 170.5 ± 2.2 GeV CDF+D0 : 170.9 ± 1.8 GeV

The road to Higgs at the Tevatron requires:

Standard 1	Model	Higgs	search	channels
------------	-------	-------	--------	----------

Production	Decay		Relative BR	N_{prod}	$_l$ in 2fb ⁻¹ (M_H)	
$qq \to VH$	$H \rightarrow b\bar{b}$	$W \rightarrow (e/\mu)\nu$	14%	50	(120 GeV)	
		$W \rightarrow \tau \nu$	7%	25		
		$W \rightarrow qq$	41%	145		
		$Z \rightarrow ee/\mu\mu$	3%	10		
		$Z \rightarrow \tau \tau$	1.5%	5		
		$Z \rightarrow \nu \nu$	8%	28		
		$Z \rightarrow qq$	26%	92		
$qq \to VH$	$H \to WW \to \ell \nu \ell \nu$	$W \rightarrow \ell \nu$	20%	4	(160 GeV)	
		$W \rightarrow qq$	41%	7		
		$Z \rightarrow \ell \ell$	4%	0.7		
		$Z \rightarrow \nu \nu$	8%	1.5		
		$Z \rightarrow qq$	27%	5		
$gg \rightarrow H$	$H \to WW$	$WW \to ee/\mu\mu/e\mu\nu\nu$	5%	27	(160 GeV)	
		$WW \rightarrow e \tau / \mu \tau / \tau \tau \nu \nu$	6%	33		
		$WW \rightarrow (e/\mu)\nu qq$	30%	160		
$gg \rightarrow H$	$H \rightarrow b\bar{b}$			950	(120 GeV)	
$gg \rightarrow H$	$H \to \tau \tau$	At least one $\tau \to \ell \nu \nu$	58%	56	(120 GeV)	
Rare SM production/decays						
$qq \rightarrow b\bar{b}H$	$H \rightarrow b\bar{b}$					
	$H \to WW$					
$qq \rightarrow t\bar{t}H$	$H \rightarrow b\bar{b}$					
$gg \rightarrow H$	$H \rightarrow ZZ$	$ZZ \rightarrow \ell \ell \ell \ell$				
		$ZZ \rightarrow \ell \ell \nu \nu$				
		$ZZ \rightarrow \ell \ell q q$				
$qq \to VH$	$H \rightarrow \tau \tau$	$V \rightarrow \ell \ell / \nu \nu / \ell \nu$				
$gg \rightarrow H$	$H \rightarrow \gamma \gamma$					
$qq \to VH$	$H \rightarrow \gamma \gamma$	$V \rightarrow \ell \ell / \nu \nu / \ell \nu$				
$gg \rightarrow H$	$H \to Z \Upsilon$					
$gg \rightarrow H$	$H \to Z J/\psi$					

- Covering all bases
- Improved triggers
 - displaced tracks
 - missing energy triggers
- Improved b-tagging
 - progress on NN b-taggers now quite advanced
 - forward b-tagging
- Improved lepton ID
 - Inclusion of taus
 - filling the "gaps"
- Improved Jet energy resolution
 - Advanced analysis techniques
 - NN's, ME techniques, others
 - combining channels, expts

Many of these efforts still relatively young

 expect vast improvements in current analyses 12

Examples of recent Tevatron analyses exploiting new strategies

$\bigcirc \mathsf{ZH} \to l \, l \, \mathsf{bb}$

- Signature:
 - 2 high-P_T leptons consistent with originating from a Z decay
 - 2 high-E_T jets, at least one of which is tagged as originating from a b-quark
 - No missing E_T
- Main backgrounds:
 - ✤ 85% Z + jets
 - → 8% t-tbar

$ZH \rightarrow l l bb$ (CDF)

- Data sample: 1 fb⁻¹
 - → 5 events produced \rightarrow 1 after selection
 - Signal / Background ~ 100
- Compared to original analysis of fitting the dijet mass spectrum:
 - → 2D NN \equiv 250% more data
 - Improved jet corrections based on missing- E_T projection $\equiv 30\%$ more data
 - b-tagging optimization \equiv 50% more data
 - Looser lepton ID $\equiv 60\%$ more data
 - Total improvement \equiv ~7 times more data
- Limits comparable to the current $WH \rightarrow Ivbb$ and $ZH \rightarrow vvbb$ analyses

2 WH $\rightarrow l \nu bb$

- Signature:
 - → 1 high-P_T lepton
 - Large missing E_T
 - 2 high-E_T jets, at least one of which is tagged as originating from a b-quark
- Main backgrounds:
 - ✤ 60% W + jets
 - t-tbar, single top

WH $\rightarrow l \nu bb$ (D0)

Matrix-element approach used from D0's single top evidence analysis

- Not yet using full muon acceptance
- B-tagging still optimized for single top
- Expect 30% better limit than the more traditional dijet mass fit

WH $\rightarrow l v bb$ should be the most sensitive low-mass channel at the Tevatron

- many analyses, but still a long way to go
- CDF/D0 combination crucial

- Signature:
 - 2 high-P_T leptons
 - Large missing E_T
- Main backgrounds:
 - → 50% WW
 - → 30% Drell-Yan

$H \rightarrow WW^* \rightarrow l \nu l \nu$ (CDF)

- Matrix-element technique
- Also uses increased lepton acceptance borrowed from CDF's WZ discovery analysis
 - Increases signal acceptance by ~70%
 - Expect ~4 signal events at M_H=160 in 1 fb⁻¹
- Significant gains over previous cut-based analysis
- Observed (expected) limit < 3.5 (5) times SM
- But can still do better with same data:
- CDF has a new NN analysis with very similar sensitivity but for different reasons, therefore, can benefit from combining these approaches this is being done now
- The H→ WW* analyses are our most sensitive for a given mass, and are competitive with the VH analyses down to ~130 GeV

M. Kruse, PHENO 2007

$$LR = rac{P_{Higgs}(M_H)}{P_{Higgs}(M_H) + \sum_i f_{
m bkg,i} P_{
m bkg,i}}$$

Status of Tevatron SM Higgs searches: 1 fb⁻¹

- CDF combination not yet ready Some improvements initiated for some analyses, but still a lot of work to do:
 - At M_H = 115 can expect CDF/D0 combination of current analyses to give limit/SM ~ 5 ⇒ ~25 times more data needed
 - → At $M_H = 160$, limit/SM ~ 3 $\Rightarrow \sim 10$ times more data
- So significant improvements needed if Higgs is to be seen at the Tevatron with 6 -8 fb-1 – but these improvements are gaining momentum – looks like we'll be close !

What about SUSY ?

After all, as our top and W mass measurements get more precise, the MSSM sector is getting more and more favourable !

- In MSSM two Higgs doublets resulting in 5 Higgs's
- Coupling to down type quarks and leptons (such as b's and t's) enhanced for large tanβ and low m_A
- So, even though the channels $gg \rightarrow H \rightarrow \tau\tau$, bb do not provide significant sensitivity to SM Higgs searches they do in some MSSM scenarios

Search for $\phi \rightarrow \tau \tau$

- One τ required to decay leptonically
- Recontruct $M_{\tau\tau}$ using \diamond visible energy
- No significant excess seen \rightarrow limits set in $\tan\beta - M_A$ plane for the no-mixing, and m_h^{max} benchmark scenarios

M_₄ (GeV)

Search for $H \rightarrow bb$

• $Z \rightarrow bb$ observed over a huge background spectrum

 At M_H = 120 would expect about 5 SM Higgs events in this spectrum (difficult to trigger on)

Huge tan β
 enhancement
 required to see
 anything

• Searches for $\phi \rightarrow bb$ use $bb\phi \rightarrow 4b$ for greater sensitivity

Of course, all this is predicated on a Higgs existing: there are many other possibilities, some of which we are also looking for...

- More complicated SUSY variants
- Technicolor models
- Topcolor models \Rightarrow tt resonances
- "Little Higgs" models
- Higgs-less models

latest tt invariant mass spectrum from CDF

Closing remarks

The excellent recent performance of the Tevatron has sparked the realisation that a Higgs might be seen before LHC, thus motivating a huge push by both experiments to optimize our sensitivity. Its discovery at the Tevatron will rely on:

- Its existence !
- More high quality data
- Further development of advanced techniques and search strategies

The LHC will open up a new era of discovery potential. If nothing is found at the Tevatron, the experience gained will still greatly benefit the LHC experiments

The tortoise (TeV) can help the hare (LHC) across the finish-line !

Backup slides

With 5 fb⁻¹ expect to:

exclude SM Higgs up to 130 GeV
 possibly achieve a 3σ result for

m_H ~ 115-120 GeV