B.T.Fleming PHENO 07 May 6, 2007

Neutrino Oscillations

Recent Results from ~ last year

Pressing Questions in the near and farther future

The beginnings of the neutrino: Experiment drives Theory -> Desperate Remedies

Bohr was ready to abandon Conservation of Energy to explain this missing energy phenomena until Pauli proposed this "desperate remedy": the neutrino

1930: Pauli "...I have predicted something which shall never be detected experimentally!"

Took another 26 years just to detect the electron neutrino!

1) lots of neutrinos

- 2) lots of detector
- 3) fine-grained
 - or specialized detectors
- 4) some combination of the above

Neutrino Beams made from Particle Accelerators

lots of neutrinos
 lots of detector
 fine-grained

 or specialized detectors
 some combination
 of the above

MINOS far detector 5.4 ktons of steel to STOP neutrinos

lots of neutrinos
 lots of detector
 fine-grained
 or specialized detectors
 some combination
 of the above

1134

0200

Liquid Argon time projection chambers

limited

size....

- 1) lots of neutrinos
- 2) lots of detector
- 3) fine-grained

or specialized detectors

4) some combination of the above

Nobel Homestake detector

SNO: tags neutral current for all flavors vs. charged current for electrons

To see neutrino interactions, you n ϵ

1) lots of neutrinos 2) lots of detector 3) fine-grained or specialized detectors 4) some combination of the above **CERN** to Gran Saiso Neutrino Beam **COMPACT** Series for the

Detector module: lead/emulsion stack electronic tracking detector

look for τ decay kink in emulsion bricks!

1930		1955		1980	2005	
Pauli Predicts the Neutrino	Fermi's theory Reines & Cowan of weak discover Da interactions (anti)neutrinos the		2 distinct flav Davis discovers the solar deficit	atmos SAGE an LEP shows 3 Kamioka II confi ors identified	SAGE and Gallex see the solar deficit LEP shows 3 active flavors amioka II confirms solar deficit s identified	
				of Ka sur Kami	distinct flavors! mioka II and IMB see ernova neutrinos oka II and IMB see	
Lots of open questions				LSND sees possible indication of oscillation signal Nobel prize for discovery		
What are we learning?					Super K sees evidence of atmospheric neutrino oscillations	
6	and Os	cillate (a	lot!)		oscillation to active flavor Super K confirms solar deficit and "images" sun	
N	leutrin	os have n	nass		<u>Nobel Prize</u> for neutrino astroparticle physics! SNO shows solar	
W	hat ha	ve we lea:	rned?		K2K confirms atmospheric oscillations KamLAND confirm solar oscillations	

The New York Times

April 12, 2007

"How Did the Universe Survive the Big Bang? In This Experiment, Clues Remain Elusive"

Chris Polly presented MiniBooNE's first results earlier today...

 $\begin{array}{l} \mbox{MiniBooNE looked for v_e} \\ \mbox{appearance in a v_μ beam} \\ \mbox{to address LSND's \overline{v}_e} \\ \mbox{appearance result...} \end{array}$

Rule out two neutrino v_e appearance as LSND reported See a discrepancy at low energies which is not yet understood

Two independent blind analyses observe event rate consistent with background above 475 MeV

Set a limit on $v_{\mu} \rightarrow v_{e}$ appearance: Incompatible with LSND at 98% CL.

•A generic search for a $\nu_{\rm e}$ excess in the $\nu_{\rm u}$ beam

Discrepancy -> excess above background below 475 MeV...

MiniBooNE actively working to understand the low energy discrepancy (background, xsecs, physics?)

> see G. Karagiorgi's talk tomorrow afternoon

Recent work by Maltoni et al. considers: If these are really oscillation events, what does this mean? Sterile neutrinos?

MiniBooNE combined with other SBL experiments in the context of 3+1, 3+2, and 3+3 models

> Then these are the main mixing matrix elements

Maltoni et al. cont.:

3+2 models include CP Violation: more flexibility to accommodate MiniBooNE with LSND, Karmen and NOMAD

However, there is significant tension between the appearance expts, and disappearance expts (Bugey, CDHS)
 tension with standard cosmological constraints

→ 3+3 models: no significant improvement

New measurements on the way!

First results from MINOS in March 2006 are terrestrial confirmation of the Atmospheric neutrino deficit.

Long Baseline v_{μ} disappearance in beam traveling from Fermilab to Soudan shows beautiful oscillatory behavior

CNGS first beam: Opera looks for tau neutrino appearance

ICARUS LArTPC: expected to be operational by late 2007

> One of the two T300 modules

θ_{13} Reactor Experiments

11/200711/200811/200911/2010

Double Chooz far detector turns on in 2007

with near detector
16 months later
jump in sensitivity

NOvA -> Fermilab's NuMI beam: off axis over ~810 km baseline from FNAL to Ash River, MN

NOvA $\rightarrow v_e$ appearance in liquid scintillator detector

•alternating xy cells of liquid scintillator
•cells: 15.7m x 3.87cm x 6.0 cm

•0.8mm looped WLS fiber in each cell for light collection
•WLS fibers read-out by APDs
•80% active material

barite

Searches for $\sin^2 2\theta_{13}$ at reactors and long baseline (LB) experiments. LB measurements also have potential for CP violation searchs and mass hierarchy (NOvA)

If we see something at these experiments (if nature is kind...): Want to pursue next generation LB measurements to look for CP Violation!

If we don't -- want to pursue next generation LB measurements to push on $sin^2 2\theta_{13}$

Next generation LB measurements in the planning stages in US, Europe, Japan

look for CP Violation in neutrino sector!

In the US:

- •FNAL/BNL Long Baseline Study almost complete
- •DOE's NuSAG committee's charge -> next generation LB experiments
- •FNAL re-evaluating near/far term program in context of timescales for ILC and neutrino program (Lab Steering Committee)
- •International Scoping Study via NuFACT

In Europe and Japan:

- •T2KK as next generation T2K
- •Ideas to upgrade CNGS beam
 - MODULAr
 - Cern to Frejus

New prospects and new New prospects and new ideas to push towards ideas to push in n sector! CP Violation in n sector Next generation LB measurements in the planning stages in US, Europe, Japan

look for CP Violation in neutrino sector!

In the US:

- •FNAL/BNL Long Baseline Study almost complete
 •DOE's NuSAG committee's charge -> next generation LB experiments
 - •FNAL re-evaluating near/far term program in context of timescales for ILC and neutrino program (Lab Steering Committee)
 - International Scoping Study via NuFACT

In Europe and Japan:

- •T2KK as next generation T2K
- •Ideas to upgrade CNGS beam
 - MODULAr
 - Cern to Frejus

New prospects and new ideas to push towards ideasion in n sector! CP Violation

FNAL/BNL Long Baseline Study: Two approaches to $v_{\mu} \rightarrow v_{e}$ long baseline searches Off axis beams:

NOvA and T2K

Beyond NOvA (NuMI Off-Axis) T2KK

primarily counting experments -narrow band beams, surface det.

Wide Band, on axis beams: Look for shape change in wide band spectra: Fermilab to DUSEL

Both span the 0.5-5GeV neutrino energy range

For both: need *intense* beams, and excellent detectors.....

Detector requirements: •maximize v_e efficiency •minimize backgrounds from misIDs primarily NC π° interactions

Water CerenkovLiquid ScintillatorLiquid Argon TPCs

For both: need *intense* beams, and excellent detectors.....

Detector requirements: •maximize v_e efficiency •minimize backgrounds from misIDs primarily NC π° interactions

•*known technology:*

- construction and operation
- reconstruction and systematics

•must be sited deep underground (for DUSEL program only)

For example:

Detector at Henderson

UNO detector:

- 1 large cavern
- 3 optically separated modules of 60x60x60 m³
- total mass 440 kT fiducial
- central module 40% PMT coverage (low E physics)
- outer modules 10% PMT coverage
- optional finer
 granularity: 20 or
 13 inch tubes
- optimal depth
 5400mwe (2500 feet)
- construction time: 10 years
- coarse cost estimate scaling Super-K: \$500M

M.Diwan

Modular option:

For both: need *intense* beams, and excellent detectors.....

Detector requirements: •maximize v_e efficiency •minimize backgrounds from misIDs primarily NC π° interactions

•Water Cerenkov •Liquid Scintillator •Liquid Argon TPCs Scaling up NOvA like detector -> difficult at best...

For both: need *intense* beams, and excellent detectors.....

Detector requirements: •maximize v_e efficiency •minimize backgrounds from misIDs primarily NC π° interactions

Water Cerenkov
Liquid Scintillator
Liquid Argon TPCs

great ν_e efficiency : 80-90%
neutral current π° rejection: <0.5%
site detector at or near surface (DUSEL or NuMI program)
have not been built on large scales (largest yet is ICARUS T600 (600 tons)

Liquid Argon TPCs:

passing charged particles produce 55,000 electrons/cm

Drift ionization electrons over meters of pure liquid argon to collection planes to image track 3-5mm sampling

need very pure Argon
need good S/N for readout electronics

How does this translate into v_{e} efficiency and π° rejection?

Electrons Single track (mip scale) starting from a single vertex

 π^{o} Multiple secondary tracks can be traced back to the same primary vertex

Each track is two electrons -2 mip scale per hit

Use both topology and dE/dx to identify interactions

Several design ideas in moving beyond the ICARUS T600 to very massive detectors

LArTPC: Modularized drift regions in one large (10-50kton) tank

GLACIER: Combination of charge and light collection, single large drift area

> LAANDD: modularized evacuated vessels

Great detectors! Challenge: can we build them on large scales?

Active R&D program in US:

- Understand Purity in large vessels
 - New filters tested at FNAL and Yale (first tracks seen in small LArTPC last month!)
 - Materials test stand at FNAL
 - Purity demonstration at FNAL under design
 - Argon purging tests to clean large tanks
- •See tracks in NuMI neutrino beam (T962)
- •Development of new electronics at MSU
- •Problems due to long wires
 - new "Cellular design" from FNAL: ladders of wires to ease installation, avoid wire breakage problems, deal with reconstruction

How do we evaluate the 10-1 VBB-WC LINK sensitivity of these programs in terms of one "metric"? sin²20₁₂ Example: Barger et al. $Exposure = Mt \times MW \times time$ 10^{-1} NuMI beam options (NOvA*) are best for θ_{13} and **CP** Violation for OPV >2MW of beam sin²28. 10^{+2} WBB is best for mass hierarchy 2. 10 LAr is $\sim x4$ more sensitive exposure [Mt MW 107s] than Water Cerenkov

see D. Marfatia's talk Monday afternoon

al. hep-ph/0610301 et Barger

THE OWNER WHEN

50

20

Conclusions

New results from MiniBooNE with more on the way: • understanding the low E discrepancy • working on cross sections

Program to search for $\sin^2 2\theta_{13}$ at reactors and accelerators

En route to next generation experiments to look for CP Violation in the neutrino sector!

Signals on wire chamber planes

Arrange E fields and wire spacing for total transparency for induction planes. Final plane collects charge

wire coordinate

drift coordinate

Fermilab beam possibilities: NuMI or new beam to a Deep Underground Science Lab (DUSEL) ie: Henderson or Homestake

LArTPC: Modularized drift regions inside tank

