Neutrino Astrophysics

Tom Weiler Vanderbilt University

Neutrino Astrophysics, Pheno07

Outline

Neutrino Astrophysics, Pheno07

*

Neutrino-rays versus Cosmic-Rays and Photons

vs come from central engines

- near R_s of massive BHs
- even from dense "hidden" sources cf. vs vs. γs from the sun

 v_s not affected by cosmic radiation

(except for annihilation resonance)

Vs not bent by magnetic fields

- enables neutrino astronomy

Also, besides Energy and Direction, ν 's carry Flavor

The Neutrino Flux

Neutrino Astrophysics, Pheno07

Cosmic Photon- Proton-Spectra

General Remarks on Neutrinos

Existence of Xgal neutrinos inferred from CR spectrum, up to 10²⁰ eV, and similarly, Galactic up to 10¹⁸ eV,

 Need gigaton (km³) mass (volume) for TeV to PeV detection [e.g. IceCube Xpt] but a teraton of mass at 10¹⁹ eV
 → SPACE-BASED [e.g. EUSO Xpt]

Neutrino eyes see farther (z>1), and deeper (into compact objects) than gamma-photons, and straighter than HECRs, with no absorption at (almost) any energy

Neutrino Astrophysics, Pheno07

Model v fluxes (Protheroe review 1996)

"Essentially Guaranteed" Xgalactic Cosmogenic ν Flux

Cosmogenic V's: $F_v(E_p/5/4) = F_p(E>5 \ 10^{19}) \times 20$

Anita

ANITA flight path, launched 15Dec2006

Neutril Hong Kong Neutrinos, June

AMANDA, RICE, Anita, IceCube, AURA, ARIANNA: Antarctic Cap = Neutrino Trap

Neutrino Astrophysics, Pheno07

IceCube

Neutrino Astrophysics, Pheno07

Vanderbilt University

Security at the CUBE

Neutrino Astrophysics, Pheno07

JEM-EUSO: Extreme Universe Space Observatory

ν HAS event rate is small at Extreme Energy

$$\mathsf{Rate}(\nu) = 2\pi A_{\mathsf{FOV}} P(\mathsf{see}\,\nu) F_{\nu} (\mathsf{duty cycle})$$

 $\mathsf{P}(\mathsf{see} \ \nu) \sim \sigma_{\nu N} \rho(\mathbf{0}) h$ and for EUSO, $2\pi\,A_{
m FOV}\sim 10^{6}\,
m km^{2}\,
m ster$ *i.e.* 2 teratons!! and, duty cycle \sim 15%. $\sigma_{\rm GQRS} \, {F_{
u} \over {
m km^{-2}\, ster^{-1}\, vr^{-1}}}$ at 10²⁰ \square e.g. F_{CR} implies 10⁻² events/yr at 10²⁰ eV; 10 events/yr at 10^{19} eV. and

Orbiting Wide-angle Lens (OWL)

3000 events/year above 10²⁰eV

and UHE Neutrinos!

Neutrino Astrophysics, Pheno07

Goldstone Lunar Radio (Cherenkov) Experiment (GLUE)

GLUE is related to RICE, FORTE, ANITA, and eventually, to Lofar, ARIANA, and SalSa

Tom Weiler, Vanderbilt University

Model Neutrino Fluxes and Future Limits

Greisen-Zatsepin-Kuzmin suppression

Observation of the GZK Cutoff by the HiRes Experiment

The High Resolution Fly's Eye (HiRes) experiment has observed the GZK cutoff. HiRes' measurement of the flux of cosmic rays shows a sharp suppression at an energy of 6×10^{19} eV, exactly the expected cutoff energy. We observe the "Ankle" of the cosmic ray spectrum as well, at an energy of 4×10^{18} eV. We describe the experiment, data collection, analysis, and estimate the systematic uncertainties. The results are presented and the calculation of a ~ 5 standard deviation observation of the GZK cutoff is described.

6 Mar 2007

Low Crossover Fits to CRs, and Berezinsky Neutrinos

The second knee from Fly's Eye data (Bird et al 1994).

Theory threshold for $p\gamma_{2.7K} \rightarrow pe^+e^$ and data (knee) are at 10^{17.6} eV. FIG. 2: Best fits to the ultra-high energy cosmic ray spectrum as observed by Akeno + AGASA and Fly's Eye + HiRes. We set $E_{\min} = 10^{8.6}$ GeV, $E_{\max} = 10^{11}$ GeV, $z_{\min} = 0.012$, $z_{\max=2}$, and $E_{i,\max} = 10^{12.5}$ GeV.

Good news: Source v's exceed cosmogenic V's at all energies!

FIG. 3: Neutrino fluxes from optically thin sources for $\epsilon_{\pi} =$ 0.25. The horizontal solid line indicates the WB prediction which corresponds to a Galactic/extra-galactic crossover energy at the ankle, $\sim 10^{10}$ GeV. The falling solid lines indicate the expected neutrino flux normalized to HiRes (lower) and AGASA (upper) data, if one assumes the onset of dominance by the extra-galactic component is at $10^{8.6}$ GeV. The dashed lines indicate the fluxes of cosmogenic neutrinos associated with flux predictions given by the falling solid lines. The cross-hatched region is excluded at the 90% CL by measurements of AMANDA-B10 [26]. The single hatched region is obtained by rescaling the AMANDA integrated bolometric flux limit to an $E_{\nu}^{-2.54}$ power law.

Some neutrino Flavor physics

Besides energy and direction, cosmic quanta carry intrinsic information.

For cosmic-rays, it is A and Z;

For photons, it is spin polarization;

For neutrinos, it is flavor:

electron-neutrino(which showers)muon neutrino(whose CC tracks)tau neutrino(which showers below a PeV, tracks above)

Moreover, the flavors mix in a calculable/known way, which means the flavors oscillate in an L/E-dependent way, enabling:

Neutrino Interferometry over Cosmic baselines !!

AMANDA/IceCube ν_{μ} event

Muon tracks with good S/N are ID'd above 100 GeV; Non-tracking events (Showers) are ID'd above a TeV

Figure 20: A muon neutrino event in AMANDA. Shown is the central part of the detector. The colorscale and symbol size correspond to hit time and amplitude [471].

and coming in the Mediterranean: Nestor, Antares

Classic Tau Signature: Double Bang (Learned and Pakvasa, 1995)

IceCube Windows for Flavor ID

Neutrino Astrophysics, Pheno07

Decohering the PMNS/tribimaximal neutrino-mixing matrix

U = R(theta32) R(theta13*) R(theta21) x MajoranaPhases =

$$\begin{array}{c} \nu_{1} & \nu_{2} & \nu_{3} \\ \nu_{e} & \\ \nu_{\mu} & \\ \nu_{\tau} & \begin{bmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{bmatrix} \\ \times \operatorname{diag}(e^{i\alpha_{1}/2}, \ e^{i\alpha_{2}/2}, \ 1) \ . \end{array}$$

Decoherence
$$\rightarrow |U_{\alpha j}|^2 = \frac{1}{6} \begin{pmatrix} 4 & 2 & 0 \\ 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$$

Vanderbilt University

$$\begin{array}{l} \begin{array}{l} \mbox{Decohering the PMNS/tribimaximal}\\ neutrino-mixing matrix \end{array} \\ \hline v_1 \quad v_2 \quad v_3 \\ \hline v_1 \quad v_1 \quad v_2 \quad v_1 \\ \hline v_1 \quad v_1 \quad v_2 \quad v_1 \\ \hline v_1 \quad v_1 \quad v_1 \quad v_1 \\ \hline v_1 \quad v_1 \quad v_1 \quad v_1 \\ \hline v_1 \quad v_1 \quad v_1 \quad v_1 \quad v_1 \\ \hline v_1 \quad v_1 \quad v_1 \quad v_1 \quad v_1 \\ \hline v_1 \quad v_1 \quad v_1 \quad v_1 \quad v_1 \\ \hline v_1 \quad v_1 \quad v_1 \quad v_1 \quad v_1 \\ \hline v_2 \quad v_1 \quad v_1 \quad v_1 \quad v_1 \\ \hline v_2 \quad v_1 \quad v_2 \quad v_1 \quad v_2 \quad v_1 \\ \hline v_1 \quad v_1 \quad v_1 \quad v_1 \quad v_1 \quad v_1 \\ \hline v_2 \quad v_1 \quad v_1 \quad v_1 \quad v_1 \quad v_1 \\ \hline v_1 \quad v_1 \quad v_1 \quad v_1 \quad v_1 \quad v_1 \\ \hline v_2 \quad v_1 \quad v_1 \quad v_1 \quad v_1 \quad v_1 \\ \hline v_1 \quad v_1 \quad v_1 \quad v_1 \quad v_1 \quad v_1 \quad v_1 \\ \hline v_2 \quad v_2 \quad v_1 \quad v_1 \quad v_1 \quad v_1 \quad v_1 \quad v_1 \\ \hline v_2 \quad v_2 \quad v_2 \quad v_1 \quad v_1 \quad v_2 \quad v_1 \quad v_1 \quad v_1 \quad v_1 \quad v_1 \quad v_1 \\ \hline v_2 \quad v_2 \quad v_1 \quad v_1$$

Neutrino Astrophysics, Pheno07

The cosmic v flavor-mixing theorem

If theta₃₂ is maximal (it is), And if $\text{Re}(U_{e3})$ is minimal (it is), Then V_{μ} and V_{τ} equilibrate;

Further, if initial v_e flux is 1/3 (as from pion-muon decay chain), Then all three flavors equilibrate.

Neutrino Flavor Ratios for various Astro processes

Process:	Flavors at Source	Flavors at Earth
	$(\nu_e:\nu_\mu:\nu_\tau)$	$(\nu_e:\nu_\mu:\nu_\tau)$
Complete $\pi^{\pm} \to e^{\pm} \stackrel{(-)}{\nu_e} \nu_{\mu} \overline{\nu}_{\mu}$ decay	1:1:1	1:1:1
Incomplete $\pi^{\pm} \to \mu^{\pm} \stackrel{(-)}{\nu_{\mu}}$	0:1:0	4:7:7
β -beam	pure $\overline{\nu}_e$	5:2:2
Virtual Black Hole Spacetime	Any	1:1:1

Democracy Broken:

- 1. Galactic β -beam
- 2. Source dynamics
- 3. v decay (15 minutes of fame)
- 4. Vacuum resonance (MaVaNs, LIV vector)
- 5. Pseudo-Dirac ν oscillations

Meszaros/Waxman-AARWGH

Predict change in cosmic flavor ratio with energy:

From complete pi-decay chain, \rightarrow 1:1:1 at Earth,

To partial pi-decay chain (~ pure \boldsymbol{V}_{μ} beam),

→ 4:7:7 at Earth;

Diagnostic for ambient density: decay mfp vs. interaction mfp.

ν -decay (via majoron emission)

$P(survive) = e^{-t/\tau} = e^{-(L/E)(m/\tau_0)}$

Beacom, Bell, Hooper, Pakvasa, TJW, PRL2003

Neutrino Astrophysics, Pheno07

ν diagnostic of astro-engines: $pp \rightarrow \pi vs. p\gamma \rightarrow \pi$

The process $\underline{v}_e + e^- \rightarrow W^-$ is resonant at 6.4 PeV;

pp make nearly equal $\pi^+\pi^-$, with $P_{\pi}/P_{CR} \sim 0.6$ $\rightarrow \nu_{\mu}: \underline{\nu_{\mu}}: \nu_{e}: \underline{\nu_{e}} = 2:2:1:1$ \rightarrow flavor democracy, $\nu_{e} = 1/6$ total

pγ via Δ⁺ make π⁺ (per two π⁰), with P_π/P_{CR} ~ 0.25 → ν_μ:ν_μ:ν_e = 1:1:1 (no ν_e) → ν_e = 1/15 total

IceCube will have flavor ID, and $\Delta E/E$ of 25%, and so can measure On-Res/Off-Res ratio to resolve this (AGHW, 2004)

Neutrinos from the Cosmos:

First non-atmospheric event is "just around the corner" [lik the Higgs and SUSY??]

Next one to ten years will be critical, and, the deities/gods willing, most fruitful !

Neutrino Astrophysics, Pheno07

The LSND-ino = miniBoo-ino ??? (with help from Extra Dimensions)

Neutrino Astrophysics, Pheno07

Sterile-active neutrino oscillations and shortcuts in the extra dimension

Heinrich Päs¹, Sandip Pakvasa¹, Thomas J. Weiler²

In QG/String Theory, brane is dynamical, fluctuating

due to

Quantum Mechanics Thermal Mechanics In-Brane stresses (e.g. EM vs. gravity) Out of Brane experiences (e.g. trans-brane gravity)

Tom Weiler, Vanderbilt University

Examples: n00 MeV resonance

• $E_{\rm res} = 200$ MeV, 300 MeV, 400 MeV; $\sin^2 \theta_* = 0.1$; $\sin^2 2\theta = 0.45$; $\delta m^2 = 0.8$ eV²

- good fit to LSND spectrum, $P_{\text{LSND}} > P_{\text{KARMEN}}$
- enhanced miniBooNE signal in the energy range 100-600 MeV

And significant V_{II} disappearance for stopped-pion source (SNS)

Neutrino Astrophysics, Pheno07

Oscillation Phase from LIV / Bulk Travel

$$A(\nu_{\alpha} \to \nu_{\beta}) = \langle \nu_{\alpha} | e^{-iHt} | \nu_{\beta} \rangle.$$
⁽¹⁾

The component of Ht which is common (i.e., proportional to the identity) cannot effect flavor change, so we may subtract it. We write the remainder as $\delta(Ht)$. With the assumption that the non-common contributions are small, we may further expand $\delta(Ht)$ as $(\delta H)t + H(\delta t)$. We are left with

$$A(\nu_{\alpha} \to \nu_{\beta}) = \langle \nu_{\alpha} | e^{-i[(\delta H)t + H(\delta t)]} | \nu_{\beta} \rangle.$$
⁽²⁾

As in standard oscillations, δH is diagonal in the mass-basis, and at lowest order is equal to

$$\delta H = \frac{1}{2E} \operatorname{diag}(m_1^2, m_2^2, \cdots).$$
 (3)

(LIV) has been shown to be phenomenologically equivalent to state-dependent limiting velocities [3, 4]. We note that with differing velocities, one has $\delta t = \delta(L/v) = -L \, \delta v / v^2$, which is $-L \, \delta v$ to lowest order. It is most natural to assign the limiting velocities to the interaction flavor eigenstates. In this case, the second term in (2) as written is already in a diagonal basis, and is equal to

$$\delta t = \operatorname{diag}(\delta t_{\alpha}, \delta t_{\beta}, \cdots) = -L \operatorname{diag}(\delta v_{\alpha}, \delta v_{\beta}, \cdots).$$
(5)

With these assumptions, the effective Hamiltonian in (7) may be written as

Bulk Travel

The matrix in brackets in (10) is equal to

Resonant mixing occurs when the two diagonal elements in Eq. (11) are equal, i.e. when

$$E_{\rm R} = \sqrt{\frac{\cos 2\theta_{43} \,\Delta_{\rm LSND}}{2\epsilon}}.$$

New parameters are

1. running
$$\tan 2\tilde{\theta} = \frac{\tan 2\theta_{43}}{1 - \left(\frac{E}{E_{\rm R}}\right)^2},$$

2. $E_{\rm R}$
3. $\Delta_{\rm LSND}$

Bulk Travel

neutrino survival probability is given by

$$P(\nu_a \to \nu_a) = \delta_{\alpha\beta} - 4 V_{a3}^2 \times \begin{cases} \sin^2 \left(\frac{L(\lambda_+ - \lambda_-)}{2}\right) & \sin^2 \tilde{\theta} \cos^2 \tilde{\theta} & V_{a3}^2 \\ + \sin^2 \left(\frac{L\lambda_+}{2}\right) & \sin^2 \tilde{\theta} & (1 - V_{a3}^2) \\ + \sin^2 \left(\frac{L\lambda_-}{2}\right) & \cos^2 \tilde{\theta} & (1 - V_{a3}^2) \end{cases}$$
(26)

The active-to-(different) active neutrino conversion probability is given by (and note the minus sign on the first term in brackets)

$$P(\nu_a \to \nu_b) = 4 V_{a3}^2 V_{b3}^2 \times \begin{cases} -\sin^2 \left(\frac{L(\lambda_+ - \lambda_-)}{2}\right) & \sin^2 \tilde{\theta} \cos^2 \tilde{\theta} \\ +\sin^2 \left(\frac{L\lambda_+}{2}\right) & \sin^2 \tilde{\theta} \\ +\sin^2 \left(\frac{L\lambda_-}{2}\right) & \cos^2 \tilde{\theta} . \end{cases}$$
(27)

Barger, Huber, Learned, Marfatia, PPW (near future)

Extra "resource" slides

Neutrino Astrophysics, Pheno07

Pseudo-Dirac Neutrinos

Pseudo-Dirac Neutrinos, a Challenge for Neutrino Telescopes

John F. Beacom,¹ Nicole F. Bell,^{1,2} Dan Hooper,³ John G. Learned,^{4,2} Sandip Pakvasa,^{4,2} and Thomas J. Weiler^{5,2}

The generic mass matrix in the
$$(\nu_L, (\nu_R)^C)$$
 basis is

$$\left(\begin{array}{cc}
m_L & m_D \\
m_D & m_R
\end{array}\right).$$
(1)

A Dirac neutrino corresponds to the case where $m_L = m_R = 0$, and may be thought of as the limit of two degenerate Majorana neutrinos with opposite CP parity. Alternatively, we may form a pseudo-Dirac neutrino [1, 2] by the addition of tiny Majorana mass terms $m_L, m_R \ll m_D$, which have the effect of splitting the Dirac neutrino into a pair of almost degenerate Majorana neutrinos, each with mass $\sim m_D$. The mixing angle between the active and sterile states is very close to maximal, $\tan(2\theta) = 2m_D/(m_R - m_L) \gg 1$, and the mass-squared difference is $\delta m^2 \simeq 2m_D(m_L + m_R)$. For three generations, the mass spectrum is shown in Fig. 1. The mirror model can produce a very similar mass spectrum [3, 4].

FIG. 1: The neutrino mass spectrum, showing the usual solar and atmospheric mass differences, as well as the pseudo-Dirac splittings in each generation (though shown as equal, we assume they are independent). The active and sterile components of each pseudo-Dirac pair are ν_{ja} and ν_{js} , and are maximal mixtures of the mass eigenstates ν_j^+ and ν_j^- . Neither the ordering of the active neutrino hierarchy, nor the signs of the pseudo-Dirac splittings, has any effect on our discussion.

Galactic Neutrino B-beam

Vanderbilt University

"AGASA"

Hot-Spots

Neutrino Astrophysics, Pheno07

AGASA hot-spots -- Data

Cluster Component ~ E -1.8±0.5

Neutrinos will point better

AGASA hot-spots -- numbers

Within 2.5 degree circles, AGASA identifies six doublet, one triplet, Out of 57 events;

Opening the angle to just 2.6 degrees, AGASA identifies seven doublets, two triplets;

Source number ~ $N_1^2/2N_2$ ~ 270 to 50%, weighting with GZK suppression, \rightarrow ~ 10⁻⁵ /Mpc³ for source density

Haverah Park contributes two more paired events in AGASA directions.

NOT corroborated by HiRes, but ... HiRes sees pointing to BL-lacs!