Particle Dark Matter

Howard Baer Florida State University

★ Evidence

 \star Candidates

★ Axions

- detection
- ★ WIMPs
 - direct
 - indirect
 - collider

Evidence for Dark Matter

- ★ Binding of clusters
- \star Galactic rotation curves
- \star Gravitational lensing
- \star Hot gas in clusters
- ★ CMB fluctuations
- ★ Large scale structure
- ★ flatness/BBN

Best fit cosmology: concordance (ΛCDM) model

- $\Omega_B h^2 = 0.022 \pm 0.001$
- $\Omega_{\nu}h^2 < 0.007 \ 95\% \ CL$
- $\Omega_{\Lambda} h^2 \sim 0.38 \pm 0.03$
- $\Omega_{CDM}h^2 = 0.105 \pm 0.01$

Candidates for Dark Matter

★ unseen baryons, e.g. BHs, brown dwarves, stellar remnants

- inconsistent with BBN element abundance calc'n
- limits from MACHO, EROS, OGLE
- \star light neutrinos (= HDM)
- \star axions
- ★ WIMPS
- ★ superWIMPS
- \star Q-balls
- \star axinos
- ★ primordial BHs

Axions

- \star PQ solution to strong CP problem in QCD
- ★ pseudo-Goldstone boson from PQ breaking at scale f_a
- non-thermally produced
 via vacuum mis-alignment

•
$$m_a \sim \Lambda_{QCD}^2 / f_a \sim 10^{-6} - 10^{-1} eV$$

•
$$\Omega_a h^2 \sim \frac{1}{2} \left[\frac{6 \times 10^{-6} eV}{m_a} \right]^{7/6} h^2$$

- astro bound: stellar cooling $\Rightarrow m_a < 10^{-1} eV$
- a couples to EM field: $a \gamma \gamma$ coupling (Sikivie)
- axion microwave cavity searches

Axion microwave cavity searches

★ ongoing searches: ADMX experiment

- Livermore \Rightarrow U Wash.
- Phase I: probe KSVZ for $m_a \sim 10^{-6} 10^{-5} \ eV$
- Phase II: probe DFSZ for $m_a \sim 10^{-6} 10^{-5} \ eV$
- beyond Phase II:
 probe higher values m_a

WIMPs: the WIMP miracle!

- Weakly Interacting Massive Particles
- assume in thermal equil'n in early universe
- Boltzman eq'n:

$$- dn/dt = -3Hn - \langle \sigma v_{rel} \rangle (n^2 - n_0^2)$$

•
$$\Omega h^2 = \frac{s_0}{\rho_c/h^2} \left(\frac{45}{\pi g_*}\right)^{1/2} \frac{x_f}{M_{Pl}} \frac{1}{\langle \sigma v \rangle}$$

•
$$\sim \frac{0.1 \ po}{\langle \sigma v \rangle} \sim 0.1 \left(\frac{m w_{imp}}{100 \ GeV} \right)$$

• thermal relic \Rightarrow new physics at $M_{weak}!$

Some WIMP candidates

- **\star** 4th gen. Dirac ν (excluded)
- **\star** SUSY neutralino (χ or \widetilde{Z}_1)
- ★ UED excited photon B^1_{μ}
- \star little Higgs photon B_H
- \star little Higgs (theory space) N_1 (scalar)
- ★ warped GUTS: LZP KK fermion
- \star branons

* ...

Most work done for SUSY theories

- ★ SUSY divergence cancellation maintains hierarchy between GUT scale $Q = 10^{16}$ GeV and weak scale Q = 100 GeV
- ★ gauge coupling unification!
- \star Lightest Higgs mass $m_h \stackrel{<}{\sim} 130$ GeV as indicated by radiative corrections!
- ★ radiative breaking of EW symmetry if $m_t \sim 100 200$ GeV!
- \star dark matter candidate: lightest neutralino $ilde{Z}_1$
- \star stable see-saw mechanism for neutrino mass
- ★ SO(10) SUSY GUT: baryogenesis via leptogenesis
 - most analyses: mSUGRA model
 - * $m_0, m_{1/2}, A_0, \tan\beta, sign(\mu)$
 - lots and lots of other models

Supersymmetry: fermions bosons

- \star MSSM: doubling of spectra
 - spin-0 squarks, sleptons
 - spin- $\frac{1}{2}$ charginos, neutralinos, gluino
 - extra Higgses: h, H, A, H^{\pm}
 - R-parity cons'n: LSP is stable
- \star LSP candidates
 - sneutrinos (excluded)
 - gravitinos (superWIMPs)
 - neutralinos
 - GMSB messengers
 - hidden sector states
 - axino/saxion

Neutralino dark matter

- ***** Why *R*-parity? natural in SO(10) SUSYGUTS if properly broken, or broken via compactification (Mohapatra, Martin, Kawamura, \cdots)
- \star In thermal equilibrium in early universe
- \star As universe expands and cools, freeze out
- ★ Number density obtained from Boltzmann eq'n

•
$$dn/dt = -3Hn - \langle \sigma v_{rel} \rangle (n^2 - n_0^2)$$

- depends critically on thermally averaged annihilation cross section times velocity
- ★ many thousands of annihilation/co-annihilation diagrams
- \star several computer codes available
 - DarkSUSY, Micromegas, IsaReD (part of Isajet)

Some neutralino (co)annihilation processes

Relic density in minimal SUGRA model

Main mSUGRA regions consistent with WMAP

- \star bulk region (low m_0 , low $m_{1/2}$)
- \star stau co-annihilation region $(m_{\tilde{\tau}_1} \simeq m_{\widetilde{Z}_1})$
- ★ HB/FP region (large m_0 where $|\mu| \rightarrow small$)
- ★ A-funnel $(2m_{\widetilde{Z}_1} \simeq m_A, m_H)$
- ★ h corridor $(2m_{\widetilde{Z}_1} \simeq m_h)$
- ★ stop co-annihilation region (particular A_0 values $m_{\tilde{t}_1} \simeq m_{\tilde{Z}_1}$)

Direct detection of SUSY DM

★ Calculate neutralino-nucleus scattering

- calculate $\widetilde{Z}_1 q$ or $\widetilde{Z}_1 g$ scattering: take $v \to 0$ limit
 - * spin-dependent cross section couples to spin of nucleus: cancel
 - * spin-independent cross section $\propto A^2$: add
 - * results usually quoted in terms of $\sigma_{SI}(\widetilde{Z}_1 p)$ so results from different target nuclei can be compared

Direct detection of SUSY DM

scan over mSUGRA space ($\Omega_{CDM}h^2 \sim 0.11$) :

- ★ Stage 1:
 - CDMS1, Edelweiss, Zeplin1
- ★ Stage 2:
 - CDMS2, CRESST2, Edelweiss2
 - Zeplin2, Xenon-10
- ★ Stage 3:
 - SuperCDMS, LUX, (mini)CLEAN
 - WARP, ArDM

Current limits from direct WIMP searches

- ★ DAMA Nal detector: signal via annual modulation?
- ★ region of $\sigma_{SI}(\widetilde{Z}_1p)$ rules it out (e.g. CDMS)
- ★ but light WIMP ~ 5 13 GeV still allowed via σ_{SD} if σ_{SI} is small (Savage, Freese, Gondolo)

Current best limit: new Xenon-10 result!

Howie Baer, Pheno 2007, May 8, 2007

Projected reach of CDMS upgrades

★ reach $10^{-9}pb$ by 2012? probe MHDM (HB/FP region)!

Howie Baer, Pheno 2007, May 8, 2007

Towards large noble gas/liquid detectors

- ★ Xe: Zeplin; Xenon; LUX
- ★ Ar: (mini)CLEAN, DEAP, ArDM
- ★ Ne: (mini)CLEAN
 - bigger-the-better: *n*-rejection via multiple scatter
 - push to ton or more size detector: probe $\sim 10^{-10}$ pb?

Other intriguing ideas

- ★ COUPP: bubble chamber
 - CF_3I target: spin-dep. sensitivity
- ★ Drift2: low pressure gas: directional sensitivity
- ★ SIGN/HPGS: high pressure gas

Indirect detection (ID) of SUSY DM: *v*-telescopes

- $\star \tilde{Z}_1 \tilde{Z}_1 \rightarrow b\bar{b}, etc.$ in core of sun (or earth): $\Rightarrow \nu_\mu \rightarrow \mu$ in ν telescopes
- ★ flux is largest when $\sigma(\widetilde{Z}_1 p)$ is largest
 - *e.g.* low $m_{\tilde{q}}$ or HB/FP region for mSUGRA
 - experiments: Amanda, Icecube, Antares

ID of SUSY DM: γ and anti-matter searches

- $\tilde{Z}_1 \tilde{Z}_1 \rightarrow q\bar{q}, etc. \rightarrow \gamma$ in galactic core or halo
- $\tilde{Z}_1 \tilde{Z}_1 \rightarrow q\bar{q}, etc. \rightarrow e^+$ in galactic halo
- $\tilde{Z}_1 \tilde{Z}_1 \rightarrow q\bar{q}, etc. \rightarrow \bar{p}$ in galactic halo
- $\tilde{Z}_1 \tilde{Z}_1 \rightarrow q\bar{q}, etc. \rightarrow \bar{D}$ in galactic halo

Rates for γ s, e^+ s, \bar{p} s vs. m_0 for fixed $m_{1/2} = 550$ GeV, $\tan \beta = 50$

• rates enhanced in A-funnel and HB/FP region (MHDM)

Sparticle reach of all colliders and relic density

HB, Belyaev, Krupovnickas, Tata

International linear e^+e^- collider (ILC)

★ A linear e^+e^- collider with $\sqrt{s} = 0.5 - 1$ TeV is highest priority project for HEP beyond LHC! Why?

- All beam energy ⇒ collision (aside from brem/beamstrahlung losses)
- beam energy known
- clean collision environment
- low (electroweak) background levels
- adjustable beam energy (threshold scans)
- e^- and possibly e^+ beam polarization
- ★ ILC will be *ideal* machine to perform precision spectroscopy of any new (EW interacting) matter states (provided they are kinematically accessible)!
- ★ timeline: decision-2012; ready-2020

Direct and indirect detection of neutralino DM

mSUGRA, $A_0=0$, tan $\beta=50$, $\mu<0$ 1600 1400 1200 gev (GeV) a 1000 gev) LC1000 600 400 I C5 no REWSB 200 1000 0 2000 3000 4000 5000 $\begin{array}{c} m_0 (\text{GeV}) \\ \blacksquare \Phi(p^{-}) & 3e-7 \text{ GeV}^{-1} \text{ cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1} \end{array} = (\text{S/B})_{e+} = 0.01 \end{array}$ $- \Phi(\gamma) = 10^{-10} \text{ cm}^{-2} \text{ s}^{-1} - \Phi^{\text{sun}}(\mu) = 40 \text{ km}^{-2} \text{ yr}^{-1} - \text{m}_{h} = 114.4 \text{ GeV}$ $\Phi^{\text{earth}}(\mu)=40 \text{ km}^{-2} \text{ yr}^{-1}$ $\sigma(\tilde{Z}_1 p)=10^{-9} \text{ pb}$ • $0 < \Omega h^2 < 0.129$

HB, Belyaev, Krupovnickas, O'Farrill

Precision sparticle measurements at a e^+e^- linear collider

Role of ILC in DM physics

- Baltz, Battaglia, Peskin, Wizansky analysis
- fit all sparticle measurements to determine underlying SUSY parameters
- then plug in to theory to find relic density
- does $\Omega_{\widetilde{Z}_1} h^2$ saturate measured value?
- possible mixed dark matter? superWIMPs?

Also determine $\sigma_{SI}(\widetilde{Z}_1 p)$

• use to extract local DM density

Also determine $\langle \sigma v \rangle$

• couple to ID to gain e.g. DM halo tomography

SuperWIMPs (e.g. \tilde{G} in SUGRA or G in UED)

- ★ $m_{\tilde{G}} = F/\sqrt{3}M_* \sim \text{TeV}$ in Supergravity models
 - usually \tilde{G} decouples (but see Moroi et al. for BBN constraints)
 - if \tilde{G} is LSP, then calculate NLSP abundance as a thermal relic: $\Omega_{NLSP}h^2$
 - $\widetilde{Z}_1 \to h \widetilde{G}, \ Z \widetilde{G}, \ \gamma \widetilde{G} \text{ or } \widetilde{\tau}_1 \to \tau \widetilde{G} \text{ possible}$
 - * lifetime $\tau_{NLSP} \sim 10^4 10^8$ sec
 - * constraints from BBN, CMB not too severe
 - * DM relic density is then $\Omega_{\tilde{G}} = \frac{m_{\tilde{G}}}{m_{NLSP}} \Omega_{NLSP}$
 - * Feng, Rajaraman, Su, Takayama; Ellis, Olive, Santoso, Spanos
 - \tilde{G} undetectable via direct/indirect DM searches
 - unique collider signatures:
 - * $\tilde{\tau}_1$ =NLSP: stable charged tracks
 - * can collect NLSPs in e.g. water (slepton trapping)
 - * monitor for $NLSP \rightarrow G$ decays

Conclusions

- \star Overwhelming evidence for CDM in the universe: identity unknown
- ★ Numerous candidate CDM particles from theory
- ★ Axions: searches ongoing (ADMX group)
- ★ WIMPs: thermal relic from Big Bang
- \star SUSY is favored WIMP candidate, but many others
- **\star** Direct detection: push to 10^{-10} pb!
- ★ Indirect DM detection prospects
- ★ Detection at colliders: Tevatron, LHC, ILC
- **\star** SuperWIMPs: \tilde{G} in SUSY; G in UED
- ★ We are on our way to unveiling the mystery of Dark Matter in next several years!

Direct detection of well-tempered neutralino

- adjust mixing of \widetilde{Z}_1 to get $\Omega_{\widetilde{Z}_1} h^2 \sim 0.11$
- then also get enhanced DD rates
- DD asymptotes around $\sim 10^{-8}~{\rm pb}$

HB, Mustayaev, Park, Tata

SUGRA models with non-universal scalars

- Normal scalar mass hierarchy NMH: HB, Belyaev, Krupovnickas, Mustafayev
- $m_0(1) \simeq m_0(2) \ll m_0(3)$ (preserve FCNC bounds)
- motivation: reconcile $BF(b \rightarrow s\gamma)$ with $(g-2)_{\mu}$ anomaly

SUGRA models with non-universal Higgs mass (NUHM1)

- $m_{H_u}^2 = m_{H_d}^2 \equiv m_{\phi}^2
 eq m_0$: HB, Belyaev, Mustafayev, Profumo, Tata
- motivation: SO(10) SUSYGUTs where $\hat{H}_{u,d} \in \phi(10)$ while matter $\in \psi(16)$
- $m_{\phi}^2 \gg m_0 \Rightarrow$ higgsino DM for any $m_0, m_{1/2}$
- $m_{\phi}^2 < 0 \Rightarrow$ can have A-funnel for any $\tan \beta$

 $m_0 = 300 \text{GeV}, m_{1/2} = 300 \text{GeV}, \tan\beta = 10, A_0 = 0, \mu > 0, m_t = 178 \text{GeV}$

NUHM2 (2-parameter case)

- $m_{H_u}^2 \neq m_{H_d}^2 \neq m_0$: HB, Belyaev, Mustafayev, Profumo, Tata
- motivation: SU(5) SUSYGUTs where $\hat{H}_u \in \phi(5)$, $\hat{H}_d \in \phi(\overline{5})$
- can re-parametrize $m_{H_u}^2$, $m_{H_d}^2 \leftrightarrow \mu$, m_A (Ellis, Olive, Santoso)
- large S term in RGEs \Rightarrow light $\tilde{u}_R, \ \tilde{c}_R$ squarks, $m_{\tilde{e}_L} < m_{\tilde{e}_R}$

Howie Baer, Pheno 2007, May 8, 2007

Gaugino mass non-universality

- $M_1 \neq M_2 \neq M_3$: HB, TK, AM, EP, SP, XT
- motivation: SUSYGUTs where gauge kinetic function transforms non-trivially
- $M_2 \sim M_1$ at M_{GUT} : mixed wino dark matter (MWDM)
- $M_2 \simeq -M_1$ at M_{GUT} : bino-wino co-annihilation (BWCA)

Howie Baer, Pheno 2007, May 8, 2007

Gaugino mass non-universality: low M_3 case

- $M_3 < M_1 \sim M_2$: HB, TK, AM, EP, SP, XT
- motivation: mixed-moduli AMSB models
- lower $M_3 \rightarrow low \ m_{\tilde{q}} \rightarrow low \ \mu \rightarrow mixed \ higgsino \ DM$

Howie Baer, Pheno 2007, May 8, 2007