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Introduction
⋆ Neutrino wave-packets:

(I) involved during production and detection processes
in realistic experiments
(II) produced before BBN through nuclear beta decays

⋆ Current studies:
(I) focus on the vacuum case
(II) reveal the existence of a coherence time limit
beyond which neutrino oscillation vanishes

⋆ Propagation of neutrino wave-packets with dispersions
at high temperature (for example, the early universe) has
never been investigated



Neutrino Wave-Packet

⋆ At t = 0, a gaussian wave-packet of νe
and no νµ:

exp
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]

⋆ How does this neutrino wave-packet evolve and
propagate (in space-time) through the high
temperature thermal medium?

⋆ Transition probability Pνe→νµ(�r, t) =?



Space-Time Evolution

⋆ Implement finite-temperature QFT
⇒ the effective Dirac equation in the medium
⇒ include self-energy corrections from the medium

⋆ Laplace transform solves the effective Dirac equation
⇒ time evolution of νµ for any momentum k

⋆ Fourier transform to obtain space-time evolution of νµ
⇒ transition probability Pνe→νµ(�r, t)



Intuitive Picture # 1

⋆ Physically propagating modes are two mass eigenstates
(almost degenerate):
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⋆ WMAP3 data:
M = 1

2
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1
2
(M1 +M2 +M3) ≈ 0.34 eV

⋆ Solar + KamLAND data:
(I) |δM 2| = |M 2
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2
2 | ≈ 7.9× 10−5 (eV)2

(II) tan2 θ ≈ 0.40
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Intuitive Picture # 2

⋆ Small difference in group velocities:
⇒ two mass eigenstates separate progressively

⋆ Neutrino oscillations will be exponentially suppressed
when two mass eigenstates cease to overlap:
⇒ medium coherence time limit T coherencemedium

⋆ Oscillatory term in Pνe→νµ(�r, t) is proportional to
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What about the Dispersions?

⋆ Two new characteristic time scales emerge!

⋆ For t > T⊥ :
⇒ transverse dispersion becomes important

⋆ For t > T‖ ≈
(
k0/M

)2
T⊥ :

⇒ longitudinal dispersion becomes important
⇒ competes with progressive separation between
the two mass eigenstates



Effects of Dispersions # 1

⋆ Oscillatory term in Pνe→νµ(�r, t � T‖) is proportional to
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⋆ If T‖ < T
coherence
medium :

⇒ longitudinal dispersion will be able to catch up
with progressive separation between the two mass
eigenstates before the coherence time limit is exceeded

⋆ Neutrino oscillations will never be exponentially
suppressed due to progressive separation between
the two mass eigenstates
⇒ frozen-coherence
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Effects of Dispersions # 2

⋆ Recall that T‖ ≫ T⊥

⋆ Large suppression of transition probability due to
enormous transverse dispersion:

Pνe→νµ(�r, t≫ T⊥) ∝
(
T⊥
t

)2
(

oscillatory term + ...

)



Resonance Regime in the Early 
Universe

⋆ Assume B − L = 0 is a good symmetry:
⇒ charged-lepton and neutrino asymmetries are
of the same order as LB ∼ 10−9

⋆ Medium mixing angle:
sin 2θm = sin 2θ

[
( cos 2θ− PHENO

δM2 )
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+sin2 2θ

] 1
2

⋆ Resonance (sin 2θm ≈ 1) occurs at T ∼ a fewMeV
⇒ right before BBN
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Comparison of Time Scales

⋆ Take T ∼ a fewMeV as the typical energy scale

⋆ Comparison:
T⊥ <<< T

oscillate
medium ≪ Tcollision ≪ THubble ≪ T coherencemedium ∼ T‖

⋆ Pνe→νµ(�r, t≫ T⊥) ∝
(
T⊥
t

)2
(

oscillatory term + ...

)

is highly suppressed on the time scale of T oscillatemedium !!!



Conclusions

⋆ characteristic time scales T⊥ and T‖ arise
due to dispersions

⋆ frozen-coherence can occur if T‖ < T
coherence
medium

⋆ large suppression of transition probability
due to enormous transverse dispersion
⇒ distortion of νe abundance due to neutrino
oscillations right before BBN is negligible


