Space-Time Propagation of Neutrino Wave-Packets in the Early Universe

[Phys. Rev. D73, 125014 (2006), with D. Boyanovsky]

Chiu Man Ho University of Pittsburgh

May 8th, Pheno-2007, University of Wisconsin

Introduction

 \bigstar Neutrino wave-packets:

(I) involved during production and detection processes in realistic experiments

(II) produced before BBN through nuclear beta decays

\bigstar Current studies:

(I) focus on the vacuum case(II) reveal the existence of a *coherence time limit*beyond which neutrino oscillation vanishes

★ Propagation of neutrino wave-packets with dispersions at high temperature (for example, the early universe) has never been investigated

Neutrino Wave-Packet

★ At t = 0, a gaussian wave-packet of ν_e and no ν_{μ} : $\exp\left[-\frac{(\vec{k} - \vec{k}_0)^2}{4\sigma^2}\right]$

- ★ How does this neutrino wave-packet evolve and propagate (in *space-time*) through the high temperature thermal medium?
- ★ Transition probability $\mathcal{P}_{\nu_e \to \nu_\mu}(\vec{r}, t) = ?$

Space-Time Evolution

- ★ Implement finite-temperature QFT⇒ the effective Dirac equation in the medium ⇒ include self-energy corrections from the medium
- ★ Laplace transform solves the effective Dirac equation ⇒ time evolution of ν_{μ} for any momentum k
- ★ Fourier transform to obtain space-time evolution of ν_{μ} ⇒ transition probability $\mathcal{P}_{\nu_e \to \nu_{\mu}}(\vec{r}, t)$

Intuitive Picture # 1

- ★ Physically propagating modes are two mass eigenstates (almost degenerate): $M_a = \overline{M} \left[1 + (-1)^{a-1} \frac{\delta M^2}{4\overline{M}^2} \right] ; |\delta M^2| / \overline{M}^2 \ll 1$
- ★ WMAP3 data: $\overline{M} = \frac{1}{2} (M_1 + M_2) < \frac{1}{2} (M_1 + M_2 + M_3) \approx 0.34 \,\text{eV}$
- ★ Solar + KamLAND data: (I) $|\delta M^2| = |M_1^2 - M_2^2| \approx 7.9 \times 10^{-5} \,(\text{eV})^2$ (II) $\tan^2 \theta \approx 0.40$

Intuitive Picture #2

★ Small difference in group velocities: ⇒ two mass eigenstates separate progressively

★ Neutrino oscillations will be exponentially suppressed when two mass eigenstates cease to overlap: ⇒ medium coherence time limit $T_{\text{medium}}^{\text{coherence}}$

★ Oscillatory term in $\mathcal{P}_{\nu_e \to \nu_\mu}(\vec{r}, t)$ is proportional to $\exp\left[-\left(\frac{t}{T_{\text{medium}}^{\text{coherence}}}\right)^2\right]\cos\left(\frac{t}{T_{\text{medium}}^{\text{oscillate}}}\right)$

What about the Dispersions?

- \star Two new characteristic time scales emerge!
- ★ For $t > T_{\perp}$: ⇒ transverse dispersion becomes important
- ★ For $t > T_{\parallel} \approx \left(k_0 / \overline{M} \right)^2 T_{\perp}$: ⇒ longitudinal dispersion becomes important ⇒ competes with progressive separation between the two mass eigenstates

Effects of Dispersions #1

- ★ Oscillatory term in $\mathcal{P}_{\nu_e \to \nu_\mu}(\vec{r}, t \gtrsim T_{\parallel})$ is proportional to $\exp\left[-\left(\frac{T_{\parallel}}{T_{\text{medium}}}\right)^2\right] \cos\left(\frac{t}{T_{\text{medium}}}\right)$
- ★ If $T_{\parallel} < T_{\text{medium}}^{\text{coherence}}$: ⇒ longitudinal dispersion will be able to catch up with progressive separation between the two mass eigenstates before the coherence time limit is exceeded
- ★ Neutrino oscillations will *never* be exponentially suppressed due to progressive separation between the two mass eigenstates \Rightarrow frozen-coherence

Effects of Dispersions #2

- \bigstar Recall that $T_{\parallel} \gg T_{\perp}$
- \bigstar Large suppression of transition probability due to enormous transverse dispersion:

$$\mathcal{P}_{\nu_e \to \nu_\mu}(\vec{r}, t \gg T_\perp) \propto \left(\frac{T_\perp}{t}\right)^2 \left(\text{oscillatory term} + \dots \right)$$

Resonance Regime in the Early Universe

★ Assume B - L = 0 is a good symmetry: ⇒ charged-lepton and neutrino asymmetries are of the same order as $\mathcal{L}_B \sim 10^{-9}$

★ Medium mixing angle: $\sin 2\theta_m = \frac{\sin 2\theta}{\left[\left(\cos 2\theta - \frac{\text{PHENO}}{\delta M^2}\right)^2 + \sin^2 2\theta\right]^{\frac{1}{2}}}$

★ Resonance $(\sin 2\theta_m \approx 1)$ occurs at $T \sim a$ few MeV ⇒ right before BBN

Comparison of Time Scales

★ Take $T \sim a$ few MeV as the typical energy scale

★ Comparison: $T_{\perp} << T_{\text{medium}}^{\text{oscillate}} \ll T_{\text{collision}} \ll T_{\text{Hubble}} \ll T_{\text{medium}}^{\text{coherence}} \sim T_{\parallel}$ ★ $\mathcal{P}_{\nu_e \to \nu_{\mu}}(\vec{r}, t \gg T_{\perp}) \propto \left(\frac{T_{\perp}}{t}\right)^2 \left(\text{oscillatory term} + ...\right)$ is highly suppressed on the time scale of $T_{\text{medium}}^{\text{oscillate}}$!!!

Conclusions

- ★ characteristic time scales T_{\perp} and T_{\parallel} arise due to dispersions
- \star frozen-coherence can occur if $T_{\parallel} < T_{\rm medium}^{\rm coherence}$
- ★ large suppression of transition probability due to enormous transverse dispersion ⇒ distortion of ν_e abundance due to neutrino oscillations right before BBN is negligible