Recoil Detection of the Lightest Neutralino in MSSM Singlet Extensions

#### Ian Lewis

with V. Barger, P. Langacker, M. McCaskey,

G. Shaughnessy, and B. Yencho

hep-ph/0702036

Pheno 07

University of Wisconsin-Madison May 7, 2007

# Outline

- Introduction
- Overview of Models
- Relic Density results
- Direct Detection experiment overview
- Spin Independent scattering calculation
- Spin Independent scattering results
- Conclusions

# Introduction

- Calculated relic density and scattering cross section for various supersymmetric models.
- Modified DarkSUSY [P. Gondolo *et al.*, astro-ph/0406204] code to incorporate additional states of investigated models
- Investigate the correlated predictions for direct detection and observed relic density bounds.

# Model Overview

- We investigated singlet extensions of the Minimal Supersymmetric Standard Model (MSSM)
  - Next-to-Minimal Supersymmetric SM (NMSSM) with an additional cubic singlet term
  - Nearly-Minimal Supersymmetric SM (nMSSM) with a tadpole term
  - U(1)'-extended MSSM (UMSSM) with an extra Z' gauge Boson
- The secluded U(1)'-extended MSSM (sMSSM) with three singlets in addition to UMSSM is equivalent to nMSSM if additional singlet vevs are large.
- sMSSM and nMSSM collectively called n/sMSSM

#### Additional States

| Model:              | MSSM | NMSSM                      | nMSSM                            | UMSSM | $\mathbf{sMSSM}$        |
|---------------------|------|----------------------------|----------------------------------|-------|-------------------------|
| Symmetry:           | _    | $\mathbb{Z}_3$             | $\mathbb{Z}_5^R, \mathbb{Z}_7^R$ | U(1)' | U(1)'                   |
| Extra               | _    | $rac{\kappa}{3}\hat{S}^3$ | $t_F \hat{S}$                    | _     | $\lambda_S S_1 S_2 S_3$ |
| superpotential term | _    | (cubic)                    | (tadpole)                        | _     | (trilinear secluded)    |
| $\chi^0_i$          | 4    | 5                          | 5                                | 6     | 9                       |
| $H_i^0$             | 2    | 3                          | 3                                | 3     | 6                       |
| $A_i^0$             | 1    | 2                          | 2                                | 1     | 4                       |

# MSSM relic density

- Points within WMAP correspond to focus point
- Lightest Higgs pole near  $m_{\chi_1^0} \sim M_{H_1}/2 \sim 60 \text{ GeV}$
- Similar effect from second lightest Higgs, giving sporadic points below populated region.



# NMSSM and UMSSM relic density



- Similar to MSSM
- These models contain more Higgs resonances, so there are more points below populated region.

# n/sMSSM relic density

- Relic density strongly dependent on neutralino mass
- Annihlation rate suppressed by Z propagator for low neutralino mass

Annihilation through



n/sMSSM

Higgs pole gives <sup>10</sup><sup>20</sup><sup>30</sup>M<sub>χ<sub>i</sub></sub> (GeV)<sup>4</sup> sporadic points for lighter neutralino masses.

 Lightest neutralino mass escapes LEP bound since it is dominately singlino.

- Present experiment much more sensitive to spin independent scattering (SI), than spin dependent (SD) scattering.
  - SI processes scatter coherently
  - Scattering is enhanced by large target nuclei



Plot updated from that in DM Review Article: Gaitskell, Ann. Rev. Nucl. and Part. Sci. 54 (2004) 315-359

 Richard Schnee, Status of Direct Searches for WIMP Dark Matter, SUSY06

- For a summary of cryogenic dark matter searches see
   W. Seidel, Nucl. Phys. (Proc. Suppl.) B138 (2005) 130
- For a summary of non-cryogenic dark matter searches see A. Morales, Nucl. Phys. (Proc. Suppl.) B238 (2005) 135

# Spin Independent Scattering

 Diagrams contributing to spin independent scattering cross section:



# SI scattering ct'd

- SI cross section [P. Gondolo et al., astro-ph/0406204]:  $\sigma_{\chi_i}^{SI} = \frac{\mu_{\chi_i}^2}{\pi} |ZG_s^p + (A - Z)G_s^n|^2$ .
  - $\mu_{\chi^i} = \frac{m_{\chi^0_1} m_N}{m_{\chi^0_1} + m_N}$  is the nucleon-neutralino reduced mass
  - $G_s^p$  ( $G_s^n$ ) is the proton (neutron) hadronic mixing matrix
- Scattering off neutrons and protons very similar, so focus on proton scattering:

$$\sigma_{\chi p}^{SI} = \frac{\mu_{\chi p}^2}{\pi} |G_s^p|^2$$

SI scattering ct'd In terms of the hadronic mixing elements and couplings  $G_{s}^{p} = \sum_{q=u,d,s,c,b,t} \langle N | \overline{q}q | N \rangle \frac{1}{2} \sum_{k=1}^{6} \frac{g_{\overline{q}_{Lk}\chi q} g_{\overline{q}_{Rk}\chi q}}{m_{\overline{q}_{k}}^{2}}$   $- \sum_{q=u,d,s} \left( \langle N | \overline{q}q | N \rangle \sum_{h=H_{1},H_{2},H_{3}} \frac{g_{h\chi\chi}g_{hqq}}{m_{h}^{2}} \right) - \frac{2}{27} \sum_{q=c,b,t} \left( f_{TG}^{(p)} \frac{m_{p}}{m_{q}} \sum_{h=H_{1},H_{2},H_{3}} \frac{g_{h\chi\chi}g_{hqq}}{m_{h}^{2}} \right)$ 

- The first term is from the squark exchange
- The second term from the Higgs exchange
- The last term from the quark loop.

# SI scattering ct'd

 The updated hadronic matrix elements are R. Ellis, A. Ferstl, and K. A. Olive, hep-ph/0001005]

$$\langle N | \overline{q}q | N \rangle = f_{Tq}^p \frac{m_p}{m_q}$$

$$f_{Tu}^p = 0.020 \pm 0.004, f_{Td}^p = 0.026 \pm 0.005, \quad f_{Ts}^p = 0.118 \pm 0.062$$

$$f_{TG}^p = 0.84 \pm 0.06$$

[J.

 Uncertainty in SI cross sections on order of 60% due to uncertainty in hadronic matrix elements.

# MSSM SI Scattering Results

- Many points with observed relic abundance within reach of SuperCDMS
- A small neutralino-Higgs coupling is needed at the Higgs pole to obtain observed relic density



With small neutralino-Higgs coupling the Higgs pole contribution to the SI scattering cross section is suppressed

# UMSSM and NMSSM SI scattering results



Results similar to MSSM

NMSSM

 More points below SuperCDMS reach due to more Higgs resonances

# n/sMSSM SI scattering

- Strict mass limit can be used to find direct detection lower limit
- XENON 10 has eliminated nearly all of the n/sMSSM parameter space
- CDMS 2007 should be able to put even stronger constraints on model.



# Conclusions

- MSSM, NMSSM, an UMSSM predict SI proton scattering cross sections that may be detectable at SuperCDMS and consistent with observed relic density
- XENON 10 has eliminated most of the n/sMSSM parameter space that is compatible with the SI scattering cross section and observed relic density
- n/sMSSM SI proton scattering cross sections are highly favored to be detectable at CDMS 2007 and compatible with measured relic density

#### **Other Studies**

- nMSSM:
  - Balazs, Carena, Freitas, Wagner, hep-ph/0705.0431
- NMSSM:
  - Cerdeno, Hugonie, Lopez-Fogliani, Munoz, Teixeira, JHEP 12, 048 (2004), hepph/0408102
  - Cerdeno, Gabrielli, Lope-Fogliani, Munoz, Teixeira, (2007), hep-ph/0701271

- Future Experiments
  - CDMS II [D. S. Akerib et al., Nucl. Instrum. Meth. A559, 390 (2006)]
  - CRESST2 [Astrophys. J. 12 (1999) 107]
  - ZEPLINII, III [Dawson et al., Nucl. Phys. B (Proc. Suppl.) 110 (2002) 109]
  - Majorana [Aalseth set al., Nucl. Phys. B (Proc. Suppl.) 110 (2002) 392]
  - Cuore [Arnaboldi et al., hep-ex/0212053]
  - DAMA II [Bernabei et al., Riv. N. Cim. 26 (2003) 1]

- SuperCDMS, WARP,
- GENIUS [Nuc. Phys. 123 (Proc. Suppl.) (2003) 209],
- ZEPLIN4 [hep-ph/0008296]
- XENON [hep-ph/0008296]
- Heidelberg Moscow Experiment [Baudis et al., Phys. Rev. D59 (1999) 022001]
- Igex [Irastorza et al., astro-ph/0211535]
- GTF [Baudis et al., Astropart. Phys. 17 (2002) 383]
- ZEPLIN I [Luscher et al., astro-ph/0305310]
- CRESST I [Angloher et al., Astropart. Phys. 18 (2002) 43],

- Tokyo LiF/NaF [Takeda et al., Phys. Lett. B572 (2003) 145]
- Rosebud [Cebrian et al., Astropart. Phys. 15 (2001) 79]
- EDELWEISS [astro-ph/0503265 (2005)]
- CDMS [astro-ph/0509269 (2006)]