Dark Matter in the Left Right Twin Higgs Model

Ethan Dolle

University of Arizona

Work done with Shufang Su and Jessica Goodman

Outline

- Left Right Twin Higgs Model
- Relic Density Analysis
- Direct and Indirect Detection
 - Conclusion

 Chacko, Goh, and Harnik: arXiv:hep-ph/0506256v1

Solution to Little Hierarchy Problem

 To avoid EW precision constraints, add a second Higgs Ĥ that couples to gauge bosons only

→ SU(2)_L Higg doublet

 Ĥ couples only to gauge bosons: could be achieved by imposing a discrete symmetry

 Ĥ couples only to gauge bosons: could be achieved by imposing a discrete symmetry

$$L=(D^{\mu}\hat{H})^{\dagger}D_{\mu}\hat{H}$$
Good

 Ĥ couples only to gauge bosons: could be achieved by imposing a discrete symmetry

$$L = (D^{\mu} \hat{H})^{\dagger} D_{\mu} \hat{H} \operatorname{Good}$$

$$L = Q \hat{H} u_R$$
 Bad

 Ĥ couples only to gauge bosons: could be achieved by imposing a discrete symmetry

$$L = (D^{\mu} \hat{H})^{\dagger} D_{\mu} \hat{H} \operatorname{Good}$$

$$L = Q \hat{H} u_R$$
 Bad

The lighter one of S/A is stable, weakly interacting

 Ĥ couples only to gauge bosons: could be achieved by imposing a discrete symmetry

$$L = (D^{\mu} \hat{H})^{\dagger} D_{\mu} \hat{H} \operatorname{Good}$$

$$L = Q \hat{H} u_R$$
 Bad

The lighter one of S/A is stable, weakly interacting
 Natural WIMP candidates

 Need to impose mass splitting between A and S: Constraints from direct detection

$$\delta_2 = M_A - M_S$$

$$h_1$$
 and h_2 mass splitting

$$\delta_1 = M_{\hat{h_1}} - M_S$$

 Need to impose mass splitting between A and S: Constraints from direct detection

$$\delta_2 = M_A - M_S$$

$$L = \frac{\lambda_5}{2} \left((H_L^{\dagger} \hat{H}_L)^2 + h.c. \right)$$

• \hat{h}_1 and \hat{h}_2 mass splitting

$$\delta_1 = M_{\hat{h_1}} - M_S$$

Similar to Inert Higgs Doublet Model Proposed by Barbieri, et al. arXiv:hep-ph/0603188v2
Dark matter analyzed by Honorez, et al. arXiv:hep-ph/0612275
Indirect detection analyzed by Gustafsson, et al. arXiv:astro-ph/0703512

Model Comparison

Inert Higgs Doublet Model	Left Right Twin Higgs Model
$M_{hsm} \sim 500 \; GeV$	$M_{hsm} \sim 170 \ GeV$
New particles	New particles
Extra scalars	Extra scalars
	Heavy gauge bosons
	Heavy top, heavy neutrinos

WMAP: 0.093<Ωh²<0.128 at 2σ level

- WMAP: 0.093<Ωh²<0.128 at 2σ level
- Solve Boltzmann equation

$$\frac{dY}{dT} = \sqrt{\frac{\pi g_*(T)}{45}} M_{Pl} \langle \sigma v \rangle (Y^2(T) - Y_{eq}^2(T))$$

- WMAP: 0.093<Ωh²<0.128 at 2σ level
- Solve Boltzmann equation

$$\frac{dY}{dT} = \sqrt{\frac{\pi g_*(T)}{45}} M_{Pl} \langle \sigma v \rangle (Y^2(T) - Y_{eq}^2(T))$$

 Consider co-annihilations when mass splittings are small

- WMAP: 0.093<Ωh²<0.128 at 2σ level
- Solve Boltzmann equation

$$\frac{dY}{dT} = \sqrt{\frac{\pi g_*(T)}{45}} M_{Pl} \langle \sigma v \rangle (Y^2(T) - Y_{eq}^2(T))$$

- Consider co-annihilations when mass splittings are small
- Used program micrOmegas_2.0

Modest choice of parameters yields

- Modest choice of parameters yields
 - High mass: $M_S \sim 500 \text{ GeV}$

- Modest choice of parameters yields
 - High mass: $M_S \sim 500 \text{ GeV}$
 - Low mass: M_S<M_W (in progress)

Ω h² vs M_S

•Two regions:

•Two regions:

•Bulk

Pole

•Can change regions by:

Ω h² vs M_S

•Two regions: •Bulk •Pole

•Can change regions by:

•Changing f

Ω h² vs M_S

•Two regions: •Bulk •Pole

•Can change regions by:

Changing f
Changing δ

$\Omega~h^2~vs~M_S$

•Two regions: •Bulk

•Pole

•Can change regions by:

Changing f
Changing δ

•M_s~550 GeV in bulk region

•M_S~550 GeV in bulk region

•M_s varies in pole region

•Too big ($\sigma \sim 10^{-31}$ cm²)

- •Too big (σ~10⁻³¹ cm²)
- •Current CDMS limit: $\sigma \sim 10^{-42} \text{ cm}^2$

- •Too big (σ~10⁻³¹ cm²)
- •Current CDMS limit: $\sigma \sim 10^{-42}$ cm²
- •Avoid constraint by imposing A-S mass splitting

- •Too big (σ~10⁻³¹ cm²)
- •Current CDMS limit: $\sigma \sim 10^{-42} \text{ cm}^2$
- •Avoid constraint by imposing A-S mass splitting

Small CW couplings

- •Too big (σ~10⁻³¹ cm²)
- •Current CDMS limit: $\sigma \sim 10^{-42} \text{ cm}^2$
- •Avoid constraint by imposing A-S mass splitting

- Small CW couplings
- ~g⁴v instead of usual ~λv

- •Too big (σ~10⁻³¹ cm²)
- •Current CDMS limit: $\sigma \sim 10^{-42} \text{ cm}^2$
- •Avoid constraint by imposing A-S mass splitting

- Small CW couplings
- ~g⁴v instead of usual ~λv

Direct detection difficult!

Indirect Detection

 Dark matter annihilates into photons, positrons, and neutrinos

Looked at photons

- Monochromatic
- Final state radiation
- Hadronization and fragmentation

Indirect Detection

 Dark matter annihilates into photons, positrons, and neutrinos

Difficult

Looked at photons

- Monochromatic
- Final state radiation
- Hadronization and fragmentation

Indirect Detection

 Dark matter annihilates into photons, positrons, and neutrinos

Looked at photons

- Monochromatic
- Final state radiation
- Hadronization and fragmentation ——> Possible

Difficult

•Contributing process •Number as a function of Eγ

$$\frac{\mathrm{d}N_{\gamma}}{\mathrm{d}x} = 0.73x^{-1.5}\mathrm{e}^{-7.8x}$$

$$x = \frac{E_{\gamma}}{M_{DM}}$$

 Spectra depends only on initial W/Z energies

•2 regions

•2 regions

Detector limits:

•2 regions

•Detector limits:

•GLAST

•2 regions

•Detector limits:

•GLAST •ACTs

•2 regions

Detector limits:

•GLAST •ACTs

Possible if J is large

 Left Right Twin Higgs Model provides a natural dark matter candidate

- Left Right Twin Higgs Model provides a natural dark matter candidate
- 2 regions (bulk and pole) where all of DM is accounted

- Left Right Twin Higgs Model provides a natural dark matter candidate
- 2 regions (bulk and pole) where all of DM is accounted
- Direct detection difficult

- Left Right Twin Higgs Model provides a natural dark matter candidate
- 2 regions (bulk and pole) where all of DM is accounted
- Direct detection difficult
- Indirect detection:
 - Monochromatic photons and final state radiation difficult
 - Hadronization possible if DM strongly clumped near Galactic center

- Left Right Twin Higgs Model provides a natural dark matter candidate
- 2 regions (bulk and pole) where all of DM is accounted
- Direct detection difficult
- Indirect detection:
 - Monochromatic photons and final state radiation difficult
 - Hadronization possible if DM strongly clumped near Galactic center
- Thank you!