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Motivations

• Theories of fermion masses, for both quarks and leptons, have acquired a good level of

predictivity and agreement with physics at ElectroWeak Scale.

• Simple models where type I see-saw mechanism is used, give a good fit to /or/ predict the

neutrino oscillation observables:

∆m2
sol, ∆m2

atm, θatm, θsol, θreact,

which requires masses for right­handed neutrinos in the range

MR ∼ (106, 1016) GeV

• On the other hand thermal leptogenesis is a simple mechanism to explain the observed

amount of baryon asymmetry in the universe

• Lightest of NR produced by thermal scattering after inflation → decays out of equilibrium to

a lepton and a Higgs doublet producing a CP and lepton number violation asymmetry, bound

on their masses
MR >∼ 109 GeV.

=: Natural to try to implement in GUT based models of fermion mas ses the

leptogenesis mechanism
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Outline

• Introduction

• Fermion masses and flavour symmetries in SO(10).

• Structure of mD
ν and MR compatible with low energy observables for:

(i) (mD
ν )11 = 0

(ii) (mD
ν )11 6= 0

• Incompatibility of "standard” leptogenesis and the structures for mD
11 = 0

• Soft leptogenesis can work with an underlying supergravity theory

• Conclusions
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Introduction

• In models where the parameter expansion describing the Yukawa couplings of neutrinos is of

the order of the parameter expansion describing the Yukawa couplings of u­type quarks,

ǫν = O(ǫu),

sometimes happens that the value needed for the lightest right handed Majorana neutrino

M1 ≤ 108 GeV

is quite below the bounds that this neturino mass should satisfy in order to get agreement with

thermal leptogenesis conditions:

M1 >∼ 109 GeV

[Which flavour symmetries are incompatible with leptogenes is?!]

• How general is this statement and which alternatives for a kind of leptogenesis are compatible

with these scenarios?

sometimes → type I see-saw and m
ν
11 = 0
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Fermion masses and flavour symmetries (SO(10))

Definition . Flavour symmetry: A symmetry that distinguishes among the species of fermions

and or its generations.

Definition . Horizontal symmetry: A symmetry that distinguishes the generations of fermions.

Question . How to describe fermion masses and mixings with flavour symmetries?

Use experimental information + your favourite form of mass matrices

Experimental information

• Fermion Masses

{mu, mc, mt} = {(0.0015,0.004), (1.15,1.35),174.3± 5.1}GeV

{md, ms, mb} = {(0.004,0.008), (0.080,0.130), (4.1,4.4)} GeV

• CKM matrix

VCKM =









1 − λ2

2
λ Aλ3(ρ − iη)

−λ 1 − λ2

2
Aλ2

Aλ3(1 − ρ − iη) −Aλ2 1









=









(0.9739,0.9751) (0.221,0.227) (0.0029,0.0045)

(0.221,0.227) (0.9730,0.9744) (0.039,0.044)

(0.0048,0.014) (0.037,0.043) (0.9990,0.9992)








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Figure 1: (ρ̄, η̄) including the measurement on ∆mBs .
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Favourite form of mass matrices

Determine your form of mass matrices

Mu
diag = Lu†MuRu, Md

diag = Ld†MdRd

VCKM = Lu†Ld↓ UMNS = Ll†Lν

→ we can determine the structure above the diagonal and the eigenvalues and

constrain elements below the diagonal.

We have many possibilities for the structure of mass matrix but a natural description of

masses in terms of ε = O(λ), λ = 0.224 it is a hierarchical description

Md= mb









ε≥6 ε3 ε≥3

ε2 ε2

1









, Mu= mt









ε≥6 ε6 ε≥6

ε≥4 ε4

1









,Me = mτ









ε≥6 ε3 ε≥3

ε2 ε≥2

1









Need to make extra assumptions

• Elements below diagonal: Symmetric matrix, anti­symmetric

• Which powers to keep in certain places?

→ Gatto­Sartori­Tonin Relation Vus = |sd
12 − eiφ1su

12| ≈
∣

∣

√

md
ms

− eiφ1

√

mu
mc

∣

∣

–7–



Pheno 07, Madison WI-

Choose your flavour symmetries

Which GUT?, which horizontal symmetry?

Some possibilities

Just GUT’s [Senjanovic et. al.]

SU(5) + νR + horizontal symmetries [Masina & Savoy, Z. Tavartkiladze, Z. Berezhiani,

K. Babu et. al.]

SO(10) + non-Abelian horizontal symmetries [Ross, V­S, Raby & Dermisek, M­C. Chen & K.T.

Mahanthapa, Bando & et al. ]

Just horizontal symmetries, e.g. U(1) [Dreiner & Thormeier et. al.]

Emerging scenarios

Symmetric Non­symmetric

Non­Abelian Abelian or Non­Abelian

mf
11 = 0 mf

11 6= 0

↓ ↓
SU(4)C × SU(2)R × SU(2)L SU(5)

Non compatible with thermal leptogenesis Compatible with thermal leptogenesis
–8–
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Structure of mD
ν and MR compatible with low energy observables

for: (mD
ν )11 = 0

In order to identify elements of MR and mD
ν , in a particular basis, with low energy observables

(mixings and mass differences) we can use the following relation

mν = UT









mν1

mν2

mν3









U∗ = −mD
ν M−1

R (mD
ν )T ,

where U is the neutrino oscillation mixing matrix and mνi
are the neutrino mass eigenvalues.

This expression is valid in the basis where charged leptons are diagonal, if their matrix is not

diagonal then U = UνUe∗.

∆m2
sol = (8.2 ± 0.3) × 10−5 eV2, ∆m2

atm = (2.2+0.6
−0.4) × 10−3 × 10−3 eV2

t2atm = 1+0.35
−0.26, t2sol = 0.39+0.05

−0.04, s2rct ≤ 0.041
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Limit of s13 → 0, t → 0 and contributions proportional to 1/M3 neglegible

We can then use the standard parameterization of the neutrino oscillation mixing matrix, along

with the Majorana phases:

mν = mν3









rs2
12 c12c23s12r −c12s12s23r

c12c23s12r c2
12c

2
23r + s223e

−2iσ −c2
12c23s23r + c23s23e

−2iσ

−c12s12s23r −c2
12c23s23r + c23s23e

−2iσ c2
12s

2
23r + e−2iσc2

23









The complete form of mν in terms of a diagonal matrix MR and a general matrix mD is given

by

mν =
1

M1









m2
11 m11m21 m11m31

m11m21 m2
21 m21m31

m11m31 m21m31 m2
31









+
1

M2









m2
12 m12m22 m12m32

m12m22 m2
22 m22m32

m12m32 m22m32 m2
32









+
1

M3









m2
13 m13m23 m13m33

m13m23 m2
23 m23m33

m13m33 m33m23 m2
33








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Now when mD
ν11 → 0, this matrix acquires a simple form.

mD =









0 t12
c23

m22 x1

pm31 m22 x2

m31 −t23m22 x3









, t23 = 1 → p = 1

second column is not hierarchical , all the entries are of comparable order, however we could

have all possible relations between m22 and m31:

m2
22r >∼ m2

31 → M1

M2

>∼ 1 m2
22r <∼ m2

31 → M1

M2

<∼ 1

m22 = O(m31) → M1

M2

= O(rm2
22/m2

31)

⇓

Compatible option with and underlying GUT theory
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Fermion masses in SO(10)

At the renormalizable level in the Higgs fields the allowed Yukawa couplings are described by

the matter Lagrangian [Mohapatra:1980nn]

LM = κ10
ij (16)i(16)j(10) + κ120

ij (16)i(16)j(120) + κ126
ij (16)i(16)j(126)

since

16 ⊗ 16 = 10 ⊕ 120 ⊕ 126.

Then the fermion masses are given in general by

(Mu)ij = κ10
ij 〈10〉+ + κ120

ij (〈120〉+ +
1

3
〈120′〉+) +

1

3
κ126

ij 〈126〉+ → Y u vu√
2

(Md)ij = κ10
ij 〈10〉− + κ120

ij (−〈120〉− +
1

3
〈120〉−) − 1

3
κ126

ij 〈126〉− → Y d vd√
2

(Mν
LR)ij = κ10

ij 〈10〉+ + κ120
ij (〈120〉+ − 〈120〉)+ + κ126

ij 〈126〉+ → Y ν vu√
2

(M l)ij = κ10
ij 〈10〉− + κ120

ij (−〈120〉− − 〈120〉)− + κ126
ij 〈126〉− → Y l vd√

2

Mν
RR = κ126

ij 〈126〉0, Mν
LL = κ126

ij 〈126〉+

–12–



Pheno 07, Madison WI-

→ Before SO(10) is broken

Mu
ij = Y u

ij 〈10〉+ → (Mν
LR)ij = Y ν

ij〈10〉+

Md
ij = Y d

ij〈10〉− → M l
ij = Y l

ij〈10〉−

→
After breaking of SO(10)

• We know we need a different structure in

Y d
ij and Y l

ij

because we know well masses and mixing angles in these sectors → Use 〈45〉
45 vev lies in the two dimensional subspace of U(1)′ generators of SO(10) that commute with

SU(3) × SU(2) × U(1) (to leave it unbroken). There are four special directions in this

subspace [Anderson:1994fe]

X, Y, B − L and TR,3.

For a breaking to SU(4)c × SU(2)R × SU(2)L , we can choose

〈45〉 = 〈45B−L〉 + kTR,3 〈45TR,3〉
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mD
ν =









0 t12
c23

m22 x1

m31 m22 x2

m31 −t23m22 x3









, mu =









0 O(λ6) O(λ6)

O(λ6) O(λ4) O(λ4)

O(λ6) O(λ4) 1









(mD
ν )22 = aνλ4 + xνλ6

mu
22 = auλ4 + xuλ6

m
D
31 = O(λ6) → m

D
22 = O(λ6) 6= m

u
22

We can achieve this for kTR,3
= 2

aν ∝
[

(B − L) + kTR,3TR,3

]

ν
= 0

Q uc dc Lc lc νc

X 1 1 −3 −3 1 5

Y −1/3 4/3 −2/3 +1 −2 0

B − L −1/3 +1/3 +1/3 +1 −1 −1

TR,3 0 +1/2 −1/2 0 −1/2 +1/2
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In the present analysis then the mixing angles are simply and exactly given by

t23 = −m32

m22

t12 =
m12

m22

m32
√

m2
22 + m2

32

,

in order for MR to be consistent with these results then we need

M2 =
t212

s212c
2
23mν3

r
m2

22

M1

M2

=

[

c2
12r

c2
23

m2
22

m2
31

]

e−2iσ + rc2
12(1 − c2

23(1 + t223))

1 + p2

mν3=
√

m2
atm, mν2=

√

m2

sol, y
ν
22=

√

mu

mc

≈ 0.054,

→ M2= sin2

β(0.5,2.4) × 10
8 GeV,

M1

M2

=0.1
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What we have learnt? The hierarchical structure, with underlying GUT symmetry

Md= mb









0 ε3 ε≥3

ε2 ε2

1









, Mu= mt









0 ε6 ε≥6

ε≥4 ε4

1









,Me = mτ









0 ε3 ε≥3

ε2 ε≥2

1









→ Gatto­Sartori­Tonin Relation Vus = |sd
12 − eiφ1su

12| ≈
∣

∣

√

md
ms

− eiφ1

√

mu
mc

∣

∣

mD
ν ∝









0 t12
c23

ε6 ε6

ε6 ε6 ε6

ε6 t23ε
6 1









, MR Diagonal

→ MR1
∼ 106 GeV

[M. C. Chen and K. T. Mahanthappa hep­ph/0409096]
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Incompatibility of "standard” leptogenesis and the structures for

(mD
ν )11 = 0

"Standard" Leptogenesis in MSSM +νR

Nj

l

Hd

+ Nj

Hd

l

N

Hd

l

+

l

Hd

N
Nj

l

Hd

Figure 2: Tree level and one-loop diagrams contributing to heavy neutrino decays.
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Figure 3: Tree level and one-loop diagrams contributing to heavy s-neutrino decays.

CP asymmetry produced in the decay of right handed neutrinos and their superpartners

In a basis, where MR is diagonal,

ε1=
Γ(N1 → l Hd) − Γ(N1 → lc Hc

d)

Γ(N1 → l Hd) + Γ(N1 → lc Hc
d)

≃ 1

8π

1

(Y νY ν†)
11

∑

i=2,3

Im

[

(

Y νY ν†
)2

1i

]

[

f

(

M2
i

M2
1

)

+g

(

M2
i

M2
1

)]
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For M1 ≪ M2, M3

ε1 ≃ − 3

8π

1

(Y νY ν†)
11

∑

i=2,3

Im

[

(

Y νY ν†
)2

1i

]

M1

Mi

In the case of mass differences of order the decay widths one expects an enhancement from the

self­energy contribution.

The CP asymmetry then leads to a lepton asymmetry

YL =
nL − nL̄

s

Baryon Asymmetry and Lepton asymmetry are related by

YB =
nB − nB̄

s
=

C

C + 1
YL = 1.3 × 10−3ηiǫi ∼ 10−10

ηi ≃
2

ziKi

(

1 − e−ziKi/2
)

, Ki =

4πΓiv2

M2

i

1.6 × 10−3 eV

Ki <∼ 1 → ηi ≈ 1

Ki ≥ 1 → ηi ≪ 1

For the present case YB ∼ 10
−14

→ not compatible!
–18–
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Soft leptogenesis
We need an underlying effective supergravity Lagrangian compatible with the flavour

symmetry. Once we have the soft terms

−Lsoft(lep) = (m2

l̃ )
j
i l̃

†i
L l̃Lj + (m2

ẽ)
j
i ẽ

∗i
R ẽRj + (m2

ν̃)j
i ν̃

∗i
R ν̃Rj

+ (m2

h̃d
)h̃d

†
h̃d + (m2

h̃u
)h̃u

†
h̃u + (aije l̃Lj ẽ

∗
Rihd + aijν l̃Lj ν̃

∗
Rihu + h.c)

+ (bhhuhd +
1

2
(bν)i

j ν̃
∗i
R ν̃∗

Rj + h.c.)

In the MSSM only the Higgs fields can have a b term, such that bh = Bµ, but when

right­handed neutrinos are included, in general there is a bν term entering in Lsoft that we can

write as (bν)ij = BνMij

Ñ and Ñ† behave like the mixing system of Kaons, K̄ − K .

Due to all the mass terms in Lsoft(lep), Ñ and Ñ† are not mass eigenvalues, instead

Ñ+ =
1√
2
(eiφ/2Ñ + e−iφ/2Ñ†), Ñ− =

−i√
2
(eiφ/2Ñ − e−iφ/2Ñ†),

are the mass eigenvalues. Its evolution (in the non­relativistic limit) can be understood in terms

of the Hamiltonian H = M̂ − iΓ̂/2

M̂ = M

(

1 B
2M

B
2M

1

)

, Γ̂ = Γ

(

1 A∗

M

A
M

1

)

, Γ =
(Y νY ν†)

4π
M, aij = AijYij

–19–
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Then the total CP asymmetry is

ε1 =
4ΓB

4B2 + Γ2

ImA

M
∆BF , ∆BF =

cB − cF

cB + cF

For the present case in order to have a Baryon asymmetry of O(10−10), given by

nB

s
= −

(

24 + 4nH

66 + 13nH

ǫ1
∆BF

)

ηY eq

Ñ

we need

B ∼ (10 MeV, 1 GeV), A ∼ 103 GeV

→ B extremely small

–20–
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→ Use an appropriate supergravity description to generate it at the right scale!

What we can learn from the Higgs case?

WObs = WY uk + MHHuHd ր0

WHid = MHidf(X)

WObs−Hid =
λH

2
XHuHd ր0

KObs = H
†
uHu + H

†

dHd

KHid = X
†
X

KObs−Hid =
λH

M2
P

X
†
XHuHd + h.c. (Giudice − Masiero)

⇓

Effective mass parameters of Higgs sector at the right scale

µ = λH < X >< FX >∼ MHid => m3/2

bH =
λH

M2
P

〈FX〉2 ∼ M2
Hid => m2

3/2

i.e. successful EW symmetry breaking
µ < Λ = MP

bH = BHµ <∼ µ2

–21–
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N, Ñ case
WObs = WY uk + MHHuHd ր0 +λijνRiΣνRjր0?

WHid = MHidf(X)

WObs−Hid =
λH

2
XHuHd ր0 +

(λN )ij

2
Xνc

iν
c

jր0?

KObs = H
†
uHu + H

†

dHd +νc†νc

KHid = kXXX
†
X

KObs−Hid =
λH

M2
P

X
†
XHuHd + h.c.

(λN )ij

M2
P

X
†
Xν†

iνj?

⇓

Effective mass parameters of N and Ñ at the right scale?

〈Σ〉 = MP => (MR)ij = λijMP = O(107GeV)(+see − saw)♠

bν =
λN

M2
P

〈FX〉2 ∼ M2
Hid => m2

3/2?

Do we have a sufficiently small B = bνMR term?

Yes if we can achieve

MN <∼ MG < MP

bN = BNMP < m2
3/2 → BN ∼

m2
3/2

MP

–22–
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W = µ(Φi)NN + Af(Φi)XKN ∼ N†
i Nj

M

(

λi†λj(a0 + a1XX†) + ...),

X a field breaking the supersymmetry

Φi observable field multiplet of SO(10)

Set a vanishing B through the minimisation of V : [Yamaguchi, M & K. Yoshioka

hep­ph/0204293]

V = eK
[

Kij̄FiFj̄ − 3|W |2
]

,

For VX :

VX = Kij̄
[

Fj̄(WiX + KiWX)
]

− 3WXW

+ KXX̄
[

FXWKXX + FX(WXX + KXWX + KXXW )
]

On the other hand the b term associated to N

b = eK
[

Kij̄Fj̄(µl + Kiµ) − 3µW + 2µW
]

Possible with a specific choice of K →
b = 0 @ at O(MP ) →

only contribution to b coming from the hidden­obs. K → B ∼ m2

3/2

MR
∼ (0.01, 1) GeV.
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Simplest form to arrange B = 0 → No­Scale Supergravity

K = −3log(φ + φ∗)

Coupling to matter fields

Y10 120(φ) = −e
−cφ, Y126 = 126 = const.

(This can be a U(1) symmetry)

φ → φ + i α

16.16.10 16.16.10 16.16.126

AY = −m3/2(φ + φ∗)∂φY →

A10, 120 ∼ m3/2, B = A126 = 0 @ GUT

1 Loop corrections due to gauge interactions of NR produce small B term

–24–
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In SO(10) the gauge coupling N − Ñ − X̃ gives

b = BM =
α

4π
m1/2M log

MX

M

MX is the mass of the heavy gauge boson X (or B − L scale)

α =
1

30
M = 108 GeV MX = 1010 GeV →

B≈ 10−2m1/2 B ≈ 1 Gev, m1/2 = 100 Gev

–25–
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Remarks

•The hierarchical structure, with underlying GUT symmetry, such that mf
11 = 0

(Vus =
∣

∣

√

md
ms

− eiφ1

√

mu
mc

∣

∣ )

→ MR1
= 106 GeV →

Not compatible with thermal leptogenesis

•Soft Leptogenesis

ε1 =
4ΓB

4B2 + Γ2

ImA

M
∆BF , ∆BF =

cB − cF

cB + cF

→ B = (0.01, 1) GeV

• No-scale supergravity A = B = 0 @ GeV 1 Loop corrections in the coupling X − N − Ñ

B =
α

4π
m1/2 log

MX

M

→ B = (0.01, 1) GeV
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