Constraints on leptogenesis from SO(10) GUT models

L. Velasco-Sevilla

E.J. Chun and L. V-S hep-ph/0702039

Theoretical Physics Institute, U of Minnesota

Motivations

• Theories of fermion masses, for both quarks and leptons, have acquired a good level of predictivity and agreement with physics at ElectroWeak Scale.

• Simple *models where type I see-saw mechanism is used,* give a good fit to /or/ predict the neutrino oscillation observables:

$$\Delta m_{\rm sol}^2$$
, $\Delta m_{\rm atm}^2$, $\theta_{\rm atm}$, $\theta_{\rm sol}$, $\theta_{\rm react}$,

which requires masses for right-handed neutrinos in the range

 $M_R \sim (10^6, 10^{16}) \,\mathrm{GeV}$

• On the other hand *thermal leptogenesis* is a simple mechanism to explain the observed amount of baryon asymmetry in the universe

• Lightest of N_R produced by thermal scattering after inflation \rightarrow decays out of equilibrium to a lepton and a Higgs doublet producing a CP and lepton number violation asymmetry, bound on their masses

$$M_R \gtrsim 10^9 \, \mathrm{GeV}.$$

=: Natural to try to implement in GUT based models of fermion masses the leptogenesis mechanism

Outline

- Introduction
- Fermion masses and flavour symmetries in SO(10).
- Structure of m_{ν}^{D} and M_{R} compatible with low energy observables for:

 $(i) (m_{\nu}^{D})_{11} = 0$ $(ii) (m_{\nu}^{D})_{11} \neq 0$

- Incompatibility of "standard" leptogenesis and the structures for $m_{11}^D = 0$
- Soft leptogenesis can work with an underlying supergravity theory
- Conclusions

Introduction

• In models where the parameter expansion describing the Yukawa couplings of neutrinos is of the order of the parameter expansion describing the Yukawa couplings of u-type quarks,

$$\epsilon_{\nu} = O(\epsilon_u),$$

sometimes happens that the value needed for the lightest right handed Majorana neutrino

$$M_1 \le 10^8 \text{ GeV}$$

is quite below the bounds that this neturino mass should satisfy in order to get agreement with thermal leptogenesis conditions:

$$M_1 \gtrsim 10^9 \, \text{GeV}$$

[Which flavour symmetries are incompatible with leptogenesis?!]

• How general is this statement and which alternatives for a kind of leptogenesis are compatible with these scenarios?

sometimes $\rightarrow \,$ type I see-saw and $m_{11}^{\nu}=0$

Fermion masses and flavour symmetries (SO(10))

Definition. Flavour symmetry: A symmetry that distinguishes among the species of fermions and or its generations.

Definition. Horizontal symmetry: A symmetry that distinguishes the generations of fermions. **Question**. How to describe fermion masses and mixings with flavour symmetries?

Use experimental information + your favourite form of mass matrices

Experimental information

• Fermion Masses $\{\mathbf{m}_{u}, \mathbf{m}_{c}, \mathbf{m}_{t}\} = \{(0.0015, 0.004), (1.15, 1.35), 174.3 \pm 5.1\} \text{GeV} \\ \{\mathbf{m}_{d}, \mathbf{m}_{s}, \mathbf{m}_{b}\} = \{(0.004, 0.008), (0.080, 0.130), (4.1, 4.4)\} \text{ GeV} \\ \bullet \mathsf{CKM} \text{ matrix} \\ V_{\mathrm{CKM}} = \begin{pmatrix} 1 - \frac{\lambda^{2}}{2} & \lambda & A\lambda^{3}(\rho - i\eta) \\ -\lambda & 1 - \frac{\lambda^{2}}{2} & A\lambda^{2} \\ \mathbf{A}\lambda^{3}(1 - \rho - i\eta) & -\mathbf{A}\lambda^{2} & 1 \end{pmatrix} \\ = \begin{pmatrix} (0.9739, 0.9751) & (0.221, 0.227) & (0.0029, 0.0045) \\ (0.221, 0.227) & (0.9730, 0.9744) & (0.039, 0.044) \\ (0.0048, 0.014) & (0.037, 0.043) & (0.9990, 0.9992) \end{pmatrix}$

Figure 1: $(\bar{\rho}, \bar{\eta})$ including the measurement on Δm_{B_s} .

Favourite form of mass matrices

Determine your form of mass matrices

$$M^{u}_{\text{diag}} = L^{u\dagger} M^{u} R^{u}, \qquad \qquad M^{d}_{\text{diag}} = L^{d\dagger} M^{d} R^{d}$$
$$V_{\text{CKM}} = L^{u\dagger} L^{d} \downarrow \qquad \qquad U_{\text{MNS}} = L^{l\dagger} L^{\nu}$$

 \rightarrow we can determine the structure above the diagonal and the eigenvalues and constrain elements below the diagonal.

We have many possibilities for the structure of mass matrix but a **natural description of** masses in terms of $\varepsilon = O(\lambda)$, $\lambda = 0.224$ it is a hierarchical description

$$M^{d} = m_{b} \begin{pmatrix} \varepsilon^{\geq 6} & \varepsilon^{3} & \varepsilon^{\geq 3} \\ & \varepsilon^{2} & \varepsilon^{2} \\ & & 1 \end{pmatrix}, M^{u} = m_{t} \begin{pmatrix} \varepsilon^{\geq 6} & \varepsilon^{6} & \varepsilon^{\geq 6} \\ & \varepsilon^{\geq 4} & \varepsilon^{4} \\ & & 1 \end{pmatrix}, M^{e} = m_{\tau} \begin{pmatrix} \varepsilon^{\geq 6} & \varepsilon^{3} & \varepsilon^{\geq 3} \\ & \varepsilon^{2} & \varepsilon^{\geq 2} \\ & & 1 \end{pmatrix}$$

Need to make extra assumptions

- Elements below diagonal: Symmetric matrix, anti-symmetric
- Which powers to keep in certain places?

$$\rightarrow$$
 Gatto-Sartori-Tonin Relation $V_{us} = |s_{12}^d - e^{i\phi_1}s_{12}^u| \approx \left|\sqrt{\frac{m_d}{m_s}} - e^{i\phi_1}\sqrt{\frac{m_u}{m_c}}\right|$

Pheno 07, Madison WI-					
Choose your flavour symmetries					
Which GUT?, which horizontal symmetry?					
Some possibilities					
Just GUT's	[Senjanovic et. al.]				
$SU(5) + \nu_R$ + horizontal symmetries K. Babu et. al.]	[Masina & Savoy, Z. Tavartkiladze, Z. Berezhiani,				
SO(10) + non-Abelian horizontal symmetries Mahanthapa, Bando & et al.]	[Ross, V-S, Raby & Dermisek, M-C. Chen & K.T.				
Just horizontal symmetries, e.g. $U(1)$	[Dreiner & Thormeier et. al.]				
Emerging scenarios					
Symmetric	Non-symmetric				
Non-Abelian	Abelian or Non-Abelian				
$m_{11}^f = 0$	$m_{11}^f \neq 0$				
\downarrow	\downarrow				
$SU(4)_C \times SU(2)_R \times SU(2)_L$	SU(5)				
Non compatible with thermal leptogenesis	Compatible with thermal leptogenesis				

Structure of m_{ν}^{D} and M_{R} compatible with low energy observables for: $(m_{\nu}^{D})_{11} = 0$

In order to identify elements of M_R and m_{ν}^D , in a particular basis, with low energy observables (mixings and mass differences) we can use the following relation

$$m_{\nu} = U^{T} \begin{bmatrix} m_{\nu_{1}} & & \\ & m_{\nu_{2}} & \\ & & m_{\nu_{3}} \end{bmatrix} U^{*} = -m_{\nu}^{D} M_{R}^{-1} (m_{\nu}^{D})^{T},$$

where U is the neutrino oscillation mixing matrix and m_{ν_i} are the neutrino mass eigenvalues. This expression is valid in the basis where charged leptons are diagonal, if their matrix is not diagonal then $U = U^{\nu}U^{e*}$.

$$\Delta m_{\rm sol}^2 = (8.2 \pm 0.3) \times 10^{-5} \,\text{eV}^2, \quad \Delta m_{\rm atm}^2 = (2.2^{+0.6}_{-0.4}) \times 10^{-3} \times 10^{-3} \,\text{eV}^2$$

$$t_{\rm atm}^2 = 1^{+0.35}_{-0.26}, \quad t_{\rm sol}^2 = 0.39^{+0.05}_{-0.04}, \quad s_{\rm rct}^2 \le 0.041$$

Pheno 07, Madison WI-

Limit of $s_{13} \rightarrow 0, t \rightarrow 0$ and contributions proportional to $1/M_3$ neglegible

We can then use the standard parameterization of the neutrino oscillation mixing matrix, along with the Majorana phases:

$$m_{\nu} = m_{\nu_3} \begin{bmatrix} rs_{12}^2 & c_{12}c_{23}s_{12}r & -c_{12}s_{12}s_{23}r \\ c_{12}c_{23}s_{12}r & c_{12}^2c_{23}^2r + s_{23}^2e^{-2i\sigma} & -c_{12}^2c_{23}s_{23}r + c_{23}s_{23}e^{-2i\sigma} \\ -c_{12}s_{12}s_{23}r & -c_{12}^2c_{23}s_{23}r + c_{23}s_{23}e^{-2i\sigma} & c_{12}^2s_{23}^2r + e^{-2i\sigma}c_{23}^2 \end{bmatrix}$$

The complete form of m_{ν} in terms of a diagonal matrix M_R and a general matrix m_D is given

$$\begin{aligned} & \text{by} \\ m_{\nu} = & \frac{1}{M_{1}} \begin{bmatrix} m_{11}^{2} & m_{11}m_{21} & m_{11}m_{31} \\ m_{11}m_{21} & m_{21}^{2} & m_{21}m_{31} \\ m_{11}m_{31} & m_{21}m_{31} & m_{31}^{2} \end{bmatrix} + & \frac{1}{M_{2}} \begin{bmatrix} m_{12}^{2} & m_{12}m_{22} & m_{12}m_{32} \\ m_{12}m_{22} & m_{22}^{2} & m_{22}m_{32} \\ m_{12}m_{32} & m_{22}m_{32} & m_{32}^{2} \end{bmatrix} \\ & + & \frac{1}{M_{3}} \begin{bmatrix} m_{13}^{2} & m_{13}m_{23} & m_{13}m_{33} \\ m_{13}m_{23} & m_{23}^{2} & m_{23}m_{33} \\ m_{13}m_{33} & m_{33}m_{23} & m_{33}^{2} \end{bmatrix} \end{aligned}$$

Now when $m_{\nu 11}^D \rightarrow 0$, this matrix acquires a simple form.

$$m^{D} = \begin{bmatrix} 0 & \frac{t_{12}}{c_{23}}m_{22} & x_{1} \\ pm_{31} & m_{22} & x_{2} \\ m_{31} & -t_{23}m_{22} & x_{3} \end{bmatrix}, \quad t_{23} = 1 \rightarrow p = 1$$

second column **is not hierarchical**, all the entries are of comparable order, however we could have all possible relations between m_{22} and m_{31} :

$$m_{22}^2 r \gtrsim m_{31}^2 \to \frac{M_1}{M_2} \gtrsim 1$$
 $m_{22}^2 r \lesssim m_{31}^2 \to \frac{M_1}{M_2} \lesssim 1$

$$\mathbf{m_{22}} = \mathbf{O}(\mathbf{m_{31}}) \to \frac{M_1}{M_2} = O(rm_{22}^2/m_{31}^2)$$

 \Downarrow

Compatible option with and underlying GUT theory

Fermion masses in SO(10)

At the **renormalizable** level in the Higgs fields the allowed Yukawa couplings are described by the matter Lagrangian [Mohapatra:1980nn]

$$\mathcal{L}_M = \kappa_{ij}^{10}(16)_i(16)_j(10) + \kappa_{ij}^{120}(16)_i(16)_j(120) + \kappa_{ij}^{126}(16)_i(16)_j(\overline{126})$$

since

$$16 \otimes 16 = 10 \oplus 120 \oplus \overline{126}.$$

Then the fermion masses are given in general by

$$\begin{split} (M^{u})_{ij} &= \kappa_{\mathbf{ij}}^{\mathbf{10}} \langle \mathbf{10} \rangle^{+} + \kappa_{ij}^{120} (\langle 120 \rangle^{+} + \frac{1}{3} \langle 120' \rangle^{+}) + \frac{1}{3} \kappa_{ij}^{\overline{126}} \langle \overline{126} \rangle^{+} \longrightarrow Y^{u} \frac{v_{u}}{\sqrt{2}} \\ (M^{d})_{ij} &= \kappa_{\mathbf{ij}}^{\mathbf{10}} \langle \mathbf{10} \rangle^{-} + \kappa_{ij}^{120} (-\langle 120 \rangle^{-} + \frac{1}{3} \langle 120 \rangle^{-}) - \frac{1}{3} \kappa_{ij}^{\overline{126}} \langle \overline{126} \rangle^{-} \longrightarrow Y^{d} \frac{v_{d}}{\sqrt{2}} \\ (M^{\nu}_{LR})_{ij} &= \kappa_{\mathbf{ij}}^{\mathbf{10}} \langle \mathbf{10} \rangle^{+} + \kappa_{ij}^{120} (\langle 120 \rangle^{+} - \langle 120 \rangle)^{+} + \kappa_{ij}^{\overline{126}} \langle \overline{126} \rangle^{+} \longrightarrow Y^{\nu} \frac{v_{u}}{\sqrt{2}} \\ (M^{l})_{ij} &= \kappa_{\mathbf{ij}}^{\mathbf{10}} \langle \mathbf{10} \rangle^{-} + \kappa_{ij}^{120} (-\langle 120 \rangle^{-} - \langle 120 \rangle)^{-} + \kappa_{ij}^{\overline{126}} \langle \overline{126} \rangle^{-} \longrightarrow Y^{l} \frac{v_{d}}{\sqrt{2}} \\ M^{\nu}_{RR} &= \kappa_{ij}^{\overline{126}} \langle \overline{126} \rangle^{0}, \qquad M^{\nu}_{LL} &= \kappa_{ij}^{\overline{126}} \langle \overline{126} \rangle^{+} \end{split}$$

 \rightarrow

 \rightarrow

Before ${f SO}(10)$ is broken

$$M_{ij}^{u} = Y_{ij}^{u} \langle 10 \rangle^{+} \rightarrow (M_{LR}^{\nu})_{ij} = Y_{ij}^{\nu} \langle 10 \rangle^{+}$$
$$M_{ij}^{d} = Y_{ij}^{d} \langle 10 \rangle^{-} \rightarrow M_{ij}^{l} = Y_{ij}^{l} \langle 10 \rangle^{-}$$

After breaking of $\mathbf{SO}(\mathbf{10})$

• We know we need a different structure in

 Y_{ij}^d and Y_{ij}^l

because we know well masses and mixing angles in these sectors \rightarrow Use $\langle 45 \rangle$

45 vev lies in the two dimensional subspace of U(1)' generators of SO(10) that commute with $SU(3) \times SU(2) \times U(1)$ (to leave it unbroken). There are four special directions in this subspace [Anderson:1994fe]

 $X, Y, B-L \text{ and } T_{R,3}.$

For a breaking to $SU(4)_c \times SU(2)_R \times SU(2)_L$, we can choose

 $\langle 45 \rangle = \langle 45_{B-L} \rangle + k_{T_{R,3}} \langle 45_{T_{R,3}} \rangle$

Pheno 07, Madison WI-

$$m_{\nu}^{D} = \begin{bmatrix} 0 & \frac{t_{12}}{c_{23}}m_{22} & x_{1} \\ m_{31} & m_{22} & x_{2} \\ m_{31} & -t_{23}m_{22} & x_{3} \end{bmatrix}, \quad m^{u} = \begin{bmatrix} 0 & O(\lambda^{6}) & O(\lambda^{6}) \\ O(\lambda^{6}) & O(\lambda^{4}) & O(\lambda^{4}) \\ O(\lambda^{6}) & O(\lambda^{4}) & 1 \end{bmatrix}$$

$$(m_{\nu}^{D})_{22} = a_{\nu}\lambda^{4} + x_{\nu}\lambda^{6}$$
$$m_{22}^{u} = a_{u}\lambda^{4} + x_{u}\lambda^{6}$$

$$\mathbf{m_{31}^D} = \mathbf{O}(\lambda^6) \rightarrow \mathbf{m_{22}^D} = \mathbf{O}(\lambda^6) \neq \mathbf{m_{22}^u}$$

We can achieve this for $\mathbf{k_{T_{R,3}}} = \mathbf{2}$ $a_{\nu} \propto \left[(B - L) + k_{T_{R,3}} T_{R,3} \right]_{\nu} = 0$

	Q	u^c	d^c	L^{c}	l^c	$ u^c$
X	1	1	-3	-3	1	5
Y	-1/3	4/3	-2/3	+1	-2	0
B-L	-1/3	+1/3	+1/3	+1	-1	-1
$T_{R,3}$	0	+1/2	-1/2	0	-1/2	+1/2

In the present analysis then the mixing angles are simply and exactly given by

$$t_{23} = -\frac{m_{32}}{m_{22}}$$
 $t_{12} = \frac{m_{12}}{m_{22}} \frac{m_{32}}{\sqrt{m_{22}^2 + m_{32}^2}},$

in order for M_R to be consistent with these results then we need

$$M_{2} = \frac{t_{12}^{2}}{s_{12}^{2}c_{23}^{2}m_{\nu_{3}}r}m_{22}^{2} \qquad \frac{M_{1}}{M_{2}} = \left[\frac{c_{12}^{2}r}{c_{23}^{2}}\frac{m_{22}^{2}}{m_{31}^{2}}\right]\frac{e^{-2i\sigma} + rc_{12}^{2}(1 - c_{23}^{2}(1 + t_{23}^{2}))}{1 + p^{2}}$$
$$m_{\nu_{3}} = \sqrt{m_{atm}^{2}}, \quad m_{\nu_{2}} = \sqrt{m_{sol}^{2}}, \quad \mathbf{y}_{22}^{\nu} = \sqrt{\frac{m_{u}}{m_{c}}} \approx 0.054,$$
$$\rightarrow \mathbf{M}_{2} = \sin_{\beta}^{2}(0.5, 2.4) \times \mathbf{10^{8} \ GeV}, \quad \frac{\mathbf{M}_{1}}{\mathbf{M}_{2}} = \mathbf{0.1}$$

What we have learnt? The hierarchical structure, with underlying GUT symmetry

$$M^{d} = m_{b} \begin{pmatrix} 0 & \varepsilon^{3} & \varepsilon^{\geq 3} \\ & \varepsilon^{2} & \varepsilon^{2} \\ & & 1 \end{pmatrix}, M^{u} = m_{t} \begin{pmatrix} 0 & \varepsilon^{6} & \varepsilon^{\geq 6} \\ & \varepsilon^{\geq 4} & \varepsilon^{4} \\ & & 1 \end{pmatrix}, M^{e} = m_{\tau} \begin{pmatrix} 0 & \varepsilon^{3} & \varepsilon^{\geq 3} \\ & \varepsilon^{2} & \varepsilon^{\geq 2} \\ & & 1 \end{pmatrix}$$

 \rightarrow Gatto-Sartori-Tonin Relation $V_{us} = |s_{12}^d - e^{i\phi_1}s_{12}^u| \approx \left|\sqrt{\frac{m_d}{m_s}} - e^{i\phi_1}\sqrt{\frac{m_u}{m_c}}\right|$

$$m_{\nu}^{D} \propto \begin{bmatrix} 0 & \frac{t_{12}}{c_{23}} \varepsilon^{6} & \varepsilon^{6} \\ \varepsilon^{6} & \varepsilon^{6} & \varepsilon^{6} \\ \varepsilon^{6} & t_{23} \varepsilon^{6} & 1 \end{bmatrix}, \quad M_{R}$$
 Diagonal

 $\rightarrow M_{R_1} \sim 10^6 \ {\rm GeV}$

[M. C. Chen and K. T. Mahanthappa hep-ph/0409096]

[M. Bando and S. Kaneko, M. Obara hep-ph/0405071]

[R. Dermisek, M. Harada and S. Raby hep-ph/0606055]

[G. Ross, L. V-S, hep-ph/0208218, hep-ph/0401064]

Pheno 07, Madison WL Incompatibility of "standard" leptogenesis and the structures for $(m_{\nu}^{D})_{11} = 0$

"Standard" Leptogenesis in MSSM + ν_R

Figure 3: Tree level and one-loop diagrams contributing to heavy s-neutrino decays.

CP asymmetry produced in the decay of right handed neutrinos and their superpartners In a basis, where M_R is diagonal,

$$\varepsilon_1 = \frac{\Gamma(N_1 \to l H_d) - \Gamma(N_1 \to l^c H_d^c)}{\Gamma(N_1 \to l H_d) + \Gamma(N_1 \to l^c H_d^c)} \simeq \frac{1}{8\pi} \frac{1}{(Y^{\nu}Y^{\nu\dagger})_{11}} \sum_{i=2,3} \lim \left[\left(Y^{\nu}Y^{\nu\dagger} \right)_{1i}^2 \right] \left[f \left(\frac{M_i^2}{M_1^2} \right) + g \left(\frac{M_i^2}{M_1^2} \right) \right]_{-1} \frac{1}{\sqrt{2\pi}} \left[f \left(\frac{M_i^2}{M_1^2} \right) + g \left(\frac{M_i^2}{M_1^2} \right) \right]_{-1} \frac{1}{\sqrt{2\pi}} \left[f \left(\frac{M_i^2}{M_1^2} \right) + g \left(\frac{M_i^2}{M_1^2} \right) \right]_{-1} \frac{1}{\sqrt{2\pi}} \left[f \left(\frac{M_i^2}{M_1^2} \right) + g \left(\frac{M_i^2}{M_1^2} \right) \right]_{-1} \frac{1}{\sqrt{2\pi}} \left[f \left(\frac{M_i^2}{M_1^2} \right) + g \left(\frac{M_i^2}{M_1^2} \right) \right]_{-1} \frac{1}{\sqrt{2\pi}} \left[f \left(\frac{M_i^2}{M_1^2} \right) + g \left(\frac{M_i^2}{M_1^2} \right) \right]_{-1} \frac{1}{\sqrt{2\pi}} \left[f \left(\frac{M_i^2}{M_1^2} \right) + g \left(\frac{M_i^2}{M_1^2} \right) \right]_{-1} \frac{1}{\sqrt{2\pi}} \frac{1}{\sqrt{2\pi}} \left[f \left(\frac{M_i^2}{M_1^2} \right) + g \left(\frac{M_i^2}{M_1^2} \right) \right]_{-1} \frac{1}{\sqrt{2\pi}} \frac{1}{\sqrt{2\pi}} \left[f \left(\frac{M_i^2}{M_1^2} \right) + g \left(\frac{M_i^2}{M_1^2} \right) \right]_{-1} \frac{1}{\sqrt{2\pi}} \frac{$$

Pheno 07, Madison WI-

For $M_1 \ll M_2, M_3$

$$\varepsilon_{1}^{\prime 3} \simeq -\frac{3}{8\pi} \, \frac{1}{(Y^{\nu}Y^{\nu\dagger})_{11}} \sum_{i=2,3} \ln\left[\left(Y^{\nu}Y^{\nu\dagger} \right)_{1i}^{2} \right] \frac{M_{1}}{M_{i}}$$

In the case of mass differences of order the decay widths one expects an enhancement from the self-energy contribution.

The CP asymmetry then leads to a lepton asymmetry

$$Y_L = \frac{n_L - n_{\bar{L}}}{s}$$

Baryon Asymmetry and Lepton asymmetry are related by

$$Y_B = \frac{n_B - n_{\bar{B}}}{s} = \frac{C}{C+1} Y_L = 1.3 \times 10^{-3} \eta_i \epsilon_i \sim 10^{-10}$$

$$\eta_i \simeq \frac{2}{z_i K_i} \left(1 - e^{-z_i K_i/2} \right), \qquad K_i = \frac{\frac{4\pi \Gamma_i v^2}{M_i^2}}{1.6 \times 10^{-3} \text{ eV}}$$

$$K_i \lesssim 1 \quad \rightarrow \quad \eta_i \approx 1$$
$$K_i \ge 1 \quad \rightarrow \quad \eta_i \ll 1$$
$$\mathbf{Y}_{\mathbf{B}} \sim \mathbf{10}^{-\mathbf{14}}$$

For the present case

$$ightarrow$$
 not compatible!

Soft leptogenesis

We need an underlying effective supergravity Lagrangian compatible with the flavour symmetry. Once we have the soft terms

$$-\mathcal{L}_{\text{soft}}(\text{lep}) = (m_{\tilde{l}}^{2})_{i}^{j} \tilde{l}_{L}^{\dagger i} \tilde{l}_{Lj} + (m_{\tilde{e}}^{2})_{i}^{j} \tilde{e}_{R}^{*i} \tilde{e}_{Rj} + (m_{\tilde{\nu}}^{2})_{i}^{j} \tilde{\nu}_{R}^{*i} \tilde{\nu}_{Rj} + (m_{\tilde{h}_{d}}^{2}) \tilde{h}_{d}^{\dagger} \tilde{h}_{d} + (m_{\tilde{h}_{u}}^{2}) \tilde{h}_{u}^{\dagger} \tilde{h}_{u} + (a^{ije} \tilde{l}_{Lj} \tilde{e}_{Ri}^{*} h_{d} + a^{ij\nu} \tilde{l}_{Lj} \tilde{\nu}_{Ri}^{*} h_{u} + \text{h.c}) + (b_{h} h_{u} h_{d} + \frac{1}{2} (b_{\nu})_{j}^{i} \tilde{\nu}_{R}^{*i} \tilde{\nu}_{Rj}^{*} + \text{h.c.})$$

In the MSSM only the Higgs fields can have a b term, such that $b_h = B\mu$, but when right-handed neutrinos are included, in general there is a b_{ν} term entering in \mathcal{L}_{soft} that we can write as $(b_{\nu})_{ij} = B_{\nu}M_{ij}$

 \tilde{N} and \tilde{N}^{\dagger} behave like the mixing system of Kaons, $\bar{K} - K$.

Due to all the mass terms in $\mathcal{L}_{soft}(lep)$, \tilde{N} and \tilde{N}^{\dagger} are not mass eigenvalues, instead

$$\tilde{N}_{+} = \frac{1}{\sqrt{2}} (e^{i\phi/2} \tilde{N} + e^{-i\phi/2} \tilde{N}^{\dagger}), \quad \tilde{N}_{-} = \frac{-i}{\sqrt{2}} (e^{i\phi/2} \tilde{N} - e^{-i\phi/2} \tilde{N}^{\dagger}),$$

are the mass eigenvalues. Its evolution (in the non-relativistic limit) can be understood in terms of the Hamiltonian $H = \hat{M} - i\hat{\Gamma}/2$

$$\hat{M} = M \begin{pmatrix} 1 & \frac{B}{2M} \\ \frac{B}{2M} & 1 \end{pmatrix}, \quad \hat{\Gamma} = \Gamma \begin{pmatrix} 1 & \frac{A^*}{M} \\ \frac{A}{M} & 1 \end{pmatrix}, \quad \Gamma = \frac{(Y^{\nu}Y^{\nu\dagger})}{4\pi}M, \quad a_{ij} = A_{ij}Y_{ij}$$

Then the total CP asymmetry is

$$\varepsilon_1 = \frac{4\Gamma B}{4B^2 + \Gamma^2} \frac{\mathrm{Im}A}{M} \Delta_{BF}, \quad \Delta_{BF} = \frac{c_B - c_F}{c_B + c_F}$$

For the present case in order to have a Baryon asymmetry of ${\cal O}(10^{-10})$, given by

$$\frac{n_B}{s} = -\left(\frac{24+4n_H}{66+13n_H}\frac{\epsilon_1}{\Delta_{BF}}\right)\eta Y_{\tilde{N}}^{eq}$$

we need

$$B \sim (10 \text{ MeV}, 1 \text{ GeV}), \quad A \sim 10^3 \text{ GeV}$$

$\rightarrow \quad B \text{ extremely small}$

 \rightarrow Use an appropriate supergravity description to generate it at the right scale!

What we can learn from the Higgs case?

$$\mathbf{W}_{Obs} = \mathbf{W}_{Yuk} + M_H \mathbf{H}_u \mathbf{H}_d \nearrow^0$$

$$\mathbf{W}_{Hid} = M_{Hid} f(\mathbf{X})$$

$$\mathbf{W}_{Obs-Hid} = \frac{\lambda_H}{2} X \mathbf{H}_u \mathbf{H}_d \nearrow^0$$

$$\mathbf{K}_{Obs} = \mathbf{H}_u^{\dagger} \mathbf{H}_u + \mathbf{H}_d^{\dagger} \mathbf{H}_d$$

$$\mathbf{K}_{Hid} = \mathbf{X}^{\dagger} \mathbf{X}$$

$$\mathbf{K}_{Obs-Hid} = \frac{\lambda_H}{M_P^2} \mathbf{X}^{\dagger} \mathbf{X} H_u H_d + h.c. \text{ (Giudice - Masiero)}$$

$$\Downarrow$$

Effective mass parameters of Higgs sector at the right scale

$$\mu = \lambda_H \langle X \rangle \langle F_X \rangle \sim M_{Hid} \Longrightarrow m_{3/2}$$

$$b_H = \frac{\lambda_H}{M_P^2} \langle F_X \rangle^2 \sim M_{Hid}^2 \Longrightarrow m_{3/2}^2$$

i.e. successful EW symmetry breaking

$$\mu < \Lambda = M_P$$

 $b_H = B_H \mu \lesssim \mu^2$

 N, \tilde{N} case

$$\mathbf{W}_{Obs} = \mathbf{W}_{Yuk} + M_{H}\mathbf{H}_{u}\mathbf{H}_{d} \nearrow^{0} + \lambda_{ij}\nu_{Ri}\Sigma\nu_{Rj}\nearrow^{0}?$$

$$\mathbf{W}_{Hid} = M_{Hid}f(\mathbf{X})$$

$$\mathbf{W}_{Obs-Hid} = \frac{\lambda_{H}}{2}X\mathbf{H}_{u}\mathbf{H}_{d} \nearrow^{0} + \frac{(\lambda_{N})_{ij}}{2}X\nu^{c}_{i}\nu^{c}_{j}\nearrow^{0}?$$

$$\mathbf{K}_{Obs} = \mathbf{H}_{u}^{\dagger}\mathbf{H}_{u} + \mathbf{H}_{d}^{\dagger}\mathbf{H}_{d} + \nu^{c\dagger}\nu^{c}$$

$$\mathbf{K}_{Hid} = k_{XX}\mathbf{X}^{\dagger}\mathbf{X}$$

$$\mathbf{K}_{Obs-Hid} = \frac{\lambda_{H}}{M_{P}^{2}}\mathbf{X}^{\dagger}\mathbf{X}\mathbf{H}_{u}\mathbf{H}_{d} + h.c.\frac{(\lambda_{N})_{ij}}{M_{P}^{2}}\mathbf{X}^{\dagger}\mathbf{X}\nu^{\dagger}_{i}\nu_{j}?$$

$$\Downarrow$$

Effective mass parameters of N and \tilde{N} at the right scale?

$$\langle \Sigma \rangle = M_P \Longrightarrow (M_R)_{ij} = \lambda_{ij} M_P = \mathcal{O}(10^7 \text{GeV})(+\text{see} - \text{saw}) ,$$

$$b_{\nu} = \frac{\lambda_N}{M_P^2} \langle F_X \rangle^2 \sim M_{Hid}^2 \Longrightarrow m_{3/2}^2?$$

Do we have a sufficiently small $B=b_{\nu}M_{R}$ term?

Yes if we can achieve

$$M_N \lesssim M_G < M_P$$

$$b_N = B_N M_P < m_{3/2}^2 \rightarrow B_N \sim \frac{m_{3/2}^2}{M_P}$$

Pheno 07, Madison WI-

$$W = \mu(\Phi_i)NN + Af(\Phi_i)XK_N \sim \frac{N_i^{\dagger}N_j}{M} \left(\lambda^{i\dagger}\lambda^j(a_0 + a_1XX^{\dagger}) + \ldots\right),$$

 \boldsymbol{X} a field breaking the supersymmetry

 Φ_i observable field multiplet of SO(10)

Set a vanishing B through the minimisation of V: [Yamaguchi, M & K. Yoshioka hep-ph/0204293]

$$V = e^{K} \left[K^{i\bar{j}} F_i F_{\bar{j}} - 3|W|^2 \right],$$

For V_X :

$$V_X = K^{i\bar{j}} \left[F_{\bar{j}}(W_{iX} + K_i W_X) \right] - 3W_X \overline{W} + K^{X\bar{X}} \left[F_X \overline{W} K_{\overline{X}X} + F_{\overline{X}}(W_{XX} + K_X W_X + K_{XX} W) \right]$$

On the other hand the b term associated to N

$$b = e^{K} \left[K^{i\bar{j}} F_{\bar{j}}(\mu_{l} + K_{i\mu}) - 3\mu \overline{W} + 2\mu \overline{W} \right]$$

Possible with a specific choice of K
ightarrow

$$b=0$$
 @ at $O(M_P)$ \rightarrow

only contribution to b coming from the hidden-obs. $K \to -B \sim \frac{m_{3/2}^2}{M_B} \sim (0.01, 1)$ GeV.

Simplest form to arrange $B = 0 \rightarrow \text{No-Scale Supergravity}$

$$\mathbf{K} = -\mathbf{3}\mathrm{log}(\phi + \phi^*)$$

Coupling to matter fields

$$\mathbf{Y}_{10 \ 120}(\phi) = -\mathbf{e}^{-\mathbf{c}\phi}, \quad \mathbf{Y}_{126} = \mathbf{126} = \text{const.}$$

(This can be a U(1) symmetry)

$$\phi \quad \to \phi \ + \ i \ \alpha$$

 $16.16.10 \quad 16.16.10 \quad 16.16.\overline{126}$

$$AY = -m_{3/2}(\phi + \phi^*)\partial_{\phi}Y \to$$

$$A_{10, 120} \sim m_{3/2}, \quad B = A_{126} = 0 @ GUT$$

1 Loop corrections due to gauge interactions of N_R produce small B term

In SO(10) the gauge coupling $N - \tilde{N} - \tilde{X}$ gives

$$b = BM = \frac{\alpha}{4\pi} m_{1/2} M \log \frac{M_X}{M}$$

 M_X is the mass of the heavy gauge boson X (or B - L scale)

$$\alpha = \frac{1}{30}$$
 $M = 10^8 \,\mathrm{GeV}$ $M_X = 10^{10} \,\mathrm{GeV}$ \rightarrow

 $B \approx 10^{-2} m_{1/2}$ $B \approx 1 \text{ Gev}, m_{1/2} = 100 \text{ Gev}$

Remarks

•The hierarchical structure, with underlying GUT symmetry, such that $m_{11}^f=0$

 $(V_{us} = \left| \sqrt{\frac{m_d}{m_s}} - e^{i\phi_1} \sqrt{\frac{m_u}{m_c}} \right|)$ $\rightarrow M_{R_1} = 10^6 \text{ GeV} \rightarrow$

Not compatible with thermal leptogenesis

•Soft Leptogenesis

$$\varepsilon_1 = \frac{4\Gamma B}{4B^2 + \Gamma^2} \frac{\mathrm{Im}A}{M} \Delta_{BF}, \quad \Delta_{BF} = \frac{c_B - c_F}{c_B + c_F}$$

 $\rightarrow \ B = (0.01,1) \ \mathrm{GeV}$

• No-scale supergravity A=B=0 @ GeV 1 Loop corrections in the coupling $X-N-\tilde{N}$

$$B = \frac{\alpha}{4\pi} m_{1/2} \log \frac{M_X}{M}$$

 $\rightarrow \ B = (0.01,1) \ \mathrm{GeV}$