Lepton Flavor Violation at BaBar

Jeff Kolb University of Oregon

8 May, 2007 Pheno Conference Madison, WI

On behalf of the BaBar Collaboration

Pheno, 8 May, 2007 - p.1/18

Lepton Flavor Violation

Lepton Flavor Violation (LFV): non-conservation of number of tau-like, muon-like, or electron-like particles

Conservation of lepton flavor is not associated with any fundamental symmetry of the Standard Model

Neutrino Oscillations: Nature violates lepton flavor symmetry

SM $au \to \mu \gamma$ rate is $\mathcal{O}(10^{-54})$

Any observation is a sign of New Physics!

LFV: Experiment

One can make many searches for LFV at Babar:

LFV in Tau Decays

Models of new physics often predict LFV in tau decays with rates $10^{-10} - 10^{-7}$.

	$\mathcal{B}(au o \ell \gamma)$	$\mathcal{B}(au ightarrow \ell \ell \ell)$
SM+ <i>v</i> -mixing (PRL95(2005)41802,EPJC8(1999)513)	10^{-54}	10^{-14}
SUSY Higgs (PLB549(2002)159, PLB566(2003)217)	10^{-10}	10^{-7}
SM+Heavy Majorana $ u_{ m R}$ (PRD66(2002)034008)	10^{-9}	10^{-10}
Non-Universal Z' (PLB547(2002)252)	10^{-9}	10^{-8}
SUSY SO(10) (NPB649(2003)189, PRD68(2003)033012)	10^{-8}	10^{-10}
mSUGRA+seesaw (EPJC14(2000)319, PRD66(2002)115013)	10^{-7}	10^{-9}

- mass-dependant couplings enhance tau modes
- Neutrinoless 2- and 3-body LFV tau decays have different sensitivities

The BaBar Detector

Asymmetric e^+e^- "B Factory" is also a <u>Tau</u>-Charm Factory:

 $\sigma(e^+e^ightarrow Bar{B})=1.05~{
m nb}$ $\sigma(e^+e^ightarrow au^+ au^-)=0.9~{
m nb}$

9 GeV electrons

3.1 GeV positrons

collisions at 10.58 GeV in CMS

Typical lepton-ID performance for LFV tau searches (loose criteria)

Particle	Efficiency	hadron mis-ID
electron	91%	2.2%
muon	66%	4.8%

PEP-II Luminosity

LFV in Tau Decays

Signature of LFV in tau decays: neutrinoless final state

Search for 1-1, 1-3 charged track topology.

Signal Characteristics

Neutrinoless tau decay:

simulated signal events

•
$$\Delta m = m_{(3-prong)} - m_{\tau}$$

• $\Delta E = E_{rec}^{CM} - \sqrt{s/2}$

- Smeared by resolution and radiative effects
- Signal Box (SB) optimized for best upper limit
- Compare events in SB to expected background

Analyses are blinded: data in SB are not counted until analysis is finalized

Backgrounds

- $\tau \rightarrow \ell \gamma$ backgrounds present a problem
 - $\tau \rightarrow \ell \nu_{\tau} \bar{\nu}_{\ell} \gamma$ irreducible at some level
 - \Rightarrow mass/energy resolution is important
 - $e^+e^- \rightarrow \mu^+\mu^-\gamma$ is more significant
- $\tau \to \ell \ell \ell$ generally lower backgrounds than $\tau \to \ell \gamma$
 - radiative Bhabha/dimuon events
 - four fermion events (via two-photon production)
 - $q\overline{q}$ events
- **9** $\tau \rightarrow \ell hh$ moderate background levels
 - $q\overline{q}$, SM au pairs

Reject backgrounds with tight particle ID, kinematics.

Backgrounds: $\tau \to \ell \ell \ell, \tau \to \ell h h$

Once events with correct topology are selected, further background suppression is needed:

Bhabha and di-muon backgrounds are modeled with data control samples.

Backgrounds: $\tau \rightarrow \ell \ell \ell$, $\ell h h$

Final background estimate: shape from MC/control, rate from data sidebands.

Results: $\tau \rightarrow \ell \ell \ell$

Luminosity: 91.5 fb^{-1}

PRL92(2004)121801

Results: $\tau \rightarrow \ell h h$

Luminosity: 221.4 fb^{-1}

PRL95(2005)191801

- Lepton Flavor violating modes: $\tau^- \rightarrow \ell^- h^+ h'^-$
- Lepton Number violating modes: $\tau^- \rightarrow \ell^+ h^- h'^-$

Background Suppression: $\tau \rightarrow \ell \gamma$

Common inputs:

- event missing mass
- highest tag-side p
- missing P_t
- tag-side $m_{
 u}^2$

Tune by tagged mode:

- electron
- electron gamma
- muon
- hadron
- hadron gamma
- 3-prong

Results: $\tau \rightarrow \ell \gamma$

Beam-energy constrained mass (m_{EC}) provides better resolution than m_{rec}

Luminosity: 232.2 fb^{-1}

$$au \to e\gamma$$
: N_{bkgd} expected: 1.9, observed: 1 PRL96(2006)41801
 $au \to \mu\gamma$: N_{bkgd} expected: 6.2, observed: 4 PRL95(2005)41802

Results: $\tau \rightarrow \ell \pi^0 / \eta / \eta'$

Summary of results

Channel	BABAR		Belle	
	$B_{UL}^{90}\ (10^{-7})$	$\mathcal{L}\left(fb^{-1} ight)$	$B_{UL}^{90} \; (10^{-7})$	${\cal L} \left(f b^{-1} ight)$
$ au ightarrow e \gamma$	1.1	232.2	1.2	535.0
	PRL96(2006)41801		ICHEP06: hep-ex/0609049	
$ au o \mu \gamma$	0.7	232.2	0.5	535.0
	PRL95(2005)41802		ICHEP06: hep-ex/0609049	
$ au o \ell \ \pi^0/\eta/\eta'$	(1.1-1.6)	339.0	(0.8-1.2)	401.0
	PRL98(2007)061803		hep-ex/0703009	
$ au ightarrow \ell \ell \ell$	(1-3)	91.5	(2-4)	87.1
	PRL92(2004)121801		PLB589(2004)103	
$ au o \ell h h$	(1-5)	221.4	(2-8)	158.0
	PRL95(2005)191801		PLB640(2006)138	

All results are frequentist limits at 90% C.L.

Summary and Outlook

- B-factories are also τ factories.
- Babar dataset is expected to double by Fall 2008.
- Possible to combine Babar and Belle results:

(S. Banerjee, Tau06, hep-ex/0702017)

• $\mathcal{B}(\tau \to \mu \gamma)_{(Babar+Belle)} < 1.6 \times 10^{-8}$

- Some searches, $\tau \rightarrow \ell \ell \ell$ e.g., are not background limited:
 - upper limit on N_{sig} is $\mathcal{O}(1) \Rightarrow \mathcal{B}^{UL}(\tau \to \ell \ell \ell)$ goes like $1/\mathcal{L}$
 - for 400 fb^{-1} , expect limits around $(2-6) \times 10^{-8}$
 - SUSY+Higgs: $\mathcal{B}(\tau \rightarrow 3\mu)$ as high as 10^{-8} (A.Brignole, A.Rossi, PLB566(2003)217)
 - Non universal Z' (Technicolor): $\mathcal{B}(\tau \to \ell \ell \ell) < 10^{-8} \Rightarrow m_{Z'} < 1.2 \text{ TeV}$ (C.Yue, Y.Zhang, PLB547(2002)252)
- LF violating decays provide an interesting probe to search for and constrain New Physics.