Measurements of V_{ub} and V_{cb} at BABAR

Kerstin Tackmann LBNL and UC Berkeley

For the $B_A B_{AR}$ Collaboration

Pheno 07 – Madison, Wisconsin – May 8, 2007

$|V_{ub}|$ and $|V_{cb}|$ in Flavor Physics

- ★ Overconstraining SM flavor sector (CKM matrix) constrains New Physics
- $\star \left| V_{qb}
 ight|$ extracted from $b
 ightarrow q \ell
 u$
- $\star |V_{ub}/V_{cb}|$ determines side opposite $oldsymbol{eta}$
 - \star Hint of tension ($\sim 2\sigma$) between $|V_{ub}|$ (tree-level, NP insensitive) and $\sin 2\beta$ (loop process, NP sensitive)
- $\star |V_{qb}|$ measurements will be legacy of B-factories

$$\Gamma = G_F^2 |V_{qb}|^2 m_b^5 |L_{\mu}|^2 |\langle X|J_L^{\mu}|B
angle|^2$$

Two complementary approaches

Exclusive	Inclusive
Reconstruct specific final state	Any X_q
$(X_q=D^{(*)},\pi, ho,)$	
Parametrize $\langle D^* J^\mu_L B angle,\langle\pi J^\mu_L B angle,$	Perform OPE in $1/m_b$
Different form factors (FF) $f_i(q^2)$:	Universal nonpert. parameters:
Lattice QCD, QCD sum rules,	Measure in $B o X_c \ell u$
Measurements	and $B o X_s \gamma$

Kerstin Tackmann

$$m_{ES}=\sqrt{E_{
m beam}^2-ec p_B^2}$$

- $\Delta E = E_B E_{
 m beam}$
- \star Loose ν selection
 - ★ Reconstruct *ν* for kinematic constraint
 - ★ High signal efficiency
 - ★ Low purity
- \star Signal yield: 5072 ± 251
- ★ Constrain FF shape: 12 bins in $q^2 \equiv (p_\ell + p_\nu)^2$ $= (p_B - p_\pi)^2$

 ${\cal B}(B^0 o \pi^- \ell^+
u) = (1.46 \pm 0.07_{
m [stat]} \pm 0.08_{
m [syst]}) imes 10^{-4}$

$B ightarrow \pi \ell \nu$ Tagged Events/0.275 GeV² Events/0. emileptonic tag (B^0 80 - Signal 232M $Bar{B}$ [hep-ex/0607089] $X_{...}\ell\nu$ bkad 3($\to X_c \ell \nu$ bkgd Bkqd w good D60 Other bkgd Other bkgd 20 B_{reco} 40 **e**⁻ 10 20 B_{reco} 2 3 15 10 20 $\cos^2\phi_{-}$ m_{miss}^2 (GeV²)

* Tag $B \to D^{(*)}Y$: high purity, small efficiency, kinematically constrained * $Y = n K + m \pi$ * $Y = \ell \nu$

- ★ Use missing mass to select signal
- ★ Fit to $\cos^2 \phi_B$ to select signal (→ kinematic consistency of event)

$$\star$$
 Yield: 31 ± 7 (B^{0}) , 26 ± 7 (B^{+})

$$\star \, {\cal B}(B^0 o \pi^- \ell^+
u)/10^{-4}$$

(isospin)

 B^0 : 1.07 ± 0.27_[stat] ± 0.15_[syst]

$$B^+$$
: $1.52 \pm 0.41_{\mathrm{[stat]}} \pm 0.20_{\mathrm{[syst]}}$

 \star Yield 57^{+13}_{-12} (B^0) , 92^{+26}_{-24} (B^+)

Kerstin Tackmann

- ★ Compare q² dependence to form factor predictions
 - **\star** Small q^2 : QCD sum rules
 - ★ Large q²: Unquenched Lattice QCD (HPQCD, FNAL)
 - ★ Start distinguishing between models

$$\star \left| V_{ub}
ight| = \sqrt{\Delta \mathcal{B}(q^2)/(au_B \Delta \zeta)}$$

- \star Get $\Delta \zeta$ from Lattice QCD calculation of FF for $q^2 > 16~{
 m GeV}^2$
 - \star Largest uncertainty on $|V_{ub}|$
- B^0 , hadronic tag
- $\blacksquare B^+$, hadronic tag
- B⁰, semileptonic tag
- $\blacksquare B^+$, semileptonic tag

$${\cal B}(B^0 o \pi^- \ell^+
u)/10^{-4}$$

untagged: $1.46 \pm 0.07_{\rm [stat]} \pm 0.08_{\rm [syst]}$ avg. tagged: $1.33 \pm 0.17_{\rm [stat]} \pm 0.11_{\rm [syst]}$

 $|V_{ub}|/10^{-3}$ from $q^2 > 16 \,{
m GeV}^2$ untagged: $4.1 \pm 0.2_{\rm [stat]} \pm 0.2_{\rm [syst]} {}^{+0.6}_{-0.4 \rm [FF]}$ avg. tagged: $4.5 \pm 0.5_{\rm [stat]} \pm 0.3_{\rm [syst]} {}^{+0.7}_{-0.5 \rm [FF]}$

[HPQCD, PRD73, 074502 (2006)]

 \star Kinematic cuts required to suppress $B \to X_c \ell \nu$

 $rac{{\cal B}(B
ightarrow X_u \ell
u)}{{\cal B}(B
ightarrow X_c \ell
u)} \sim 0.02$

 $|V_{ub}|$ from Inclusive $B o X_u \ell
u$

 \star Control of $B o X_c \ell
u$ background important

★ OPE breaks down in endpoint region, requires nonperturbative shape function ($\rightarrow b$ quark motion in $B \rightarrow$ smears kinematics)

$$\star \left| V_{ub}
ight| = \sqrt{\Delta \mathcal{B} / (au_B \Delta \zeta)}$$

To get $\Delta \zeta$

- \star Assume shape function model, extract model parameters from $B o X_c \ell
 u$ and $B o X_s \gamma$
- \star Use weighted integrals of $B o X_s \gamma$ spectrum
- \star Push deep enough into $B o X_c \ell
 u$ to use OPE

$88.9 M \, B ar{B}$ [hep-ex/060146]

- Hadronic tag provides well understood kinematics
- Reduce dependence on shape function (uncertainties)
- Trade-off between experimental and theoretical uncertainties

 $\star |V_{ub}|/10^{-3}$ with cut on m_X

 $m_X < 1.67 \, {
m GeV}$: $4.43 \pm 0.38_{
m [stat]} \pm 0.25_{
m [syst]} \pm 0.29_{
m [theo]}$ (LLR) Use $B_A B_{AR} \, B o X_s \gamma$ spectrum [PRD72 052004 (2005)]

 $m_X < 2.50 \, {
m GeV}$: $3.84 \pm 0.7_{
m [stat]} \pm 0.3_{
m [syst]} \pm 0.1_{
m [theo]}$ (full rate)

[LLR = Leibovich, Low, Rothstein, PRD61 053006 (2000), PLB486 86 (2000)]

rerer

HFAG Average of $|V_{ub}|$

 \star Exclusive $|V_{ub}|$ averages appear systematically lower

 \star In better agreement with $\sin 2eta$

 $|V_{cb}|$ and FF in $B
ightarrow D^* \ell
u$

 $rac{d\Gamma(B
ightarrow D^* \ell
u)}{dw d \cos heta_l d \cos heta_V d \chi} = rac{G_F^2 |V_{cb}|^2}{48 \pi^3} \mathcal{M}^2(w, heta_\ell, heta_V, \chi) \mathcal{G}(w) ~~(w = v_B \cdot v_{D^*})$

 $\star \mathcal{G}(w) \sim \sqrt{w^2-1}$ (phase space)

 $\star \, \mathcal{M}(w, heta_\ell, heta_V,\chi)$ expressed in terms of D^* helicity amplitudes $H_{0,\pm}(w)$

 \star Parametrize $H_{0,\pm}$ in terms of FF ratios $R_1(w), R_2(w)$ and $h_{A_1}(w)$

$$egin{aligned} h_{A_1}(w) &= h_{A_1}(1) \Big[1 - oldsymbol{
ho}^2(w-1) + \cdots \Big] \ \mathcal{F}^2(w) &= \int \mathcal{M}^2(w, heta_l, heta_V, w) \, d heta_l \, d heta_V \, d\chi \end{aligned}$$

 $\star \mathcal{F}(w=1)=1$ in limit $m_{b,c} o \infty$ but $\mathcal{G}(w o 1) o 0$

$$\Rightarrow \text{Extrapolate } \left. \frac{1}{\mathcal{G}(w)} \frac{d\Gamma}{dw} \right|_{w \to 1} = \frac{G_F^2 |V_{cb}|^2}{48\pi^3} \mathcal{F}^2(w=1) \quad \text{to extract } |V_{cb}|$$

Kerstin Tackmann

 $|V_{cb}| = (37.73 \pm 0.35_{\mathrm{[stat]}} \pm 1.25_{\mathrm{[syst]}} {}^{+1.23}_{-1.44\mathrm{[theo]}}) imes 10^{-3}$

Composition of $B \to X_c \ell \nu$

- Understanding composition of
 - $B
 ightarrow X_c \ell
 u$ important for $|V_{ub}|$, $|V_{cb}|$
- \star Reconstruct D, ℓ and non-overlapping hadronic tag
- ★ Fit to missing mass, lepton momentum and charged track multiplicity to determine D, D^*, D^{**} components

 $\star D^{**}$ includes nonresonant decays

Ratio	B^- (%)	$ar{B}^{0}\left(\% ight)$	*
$\frac{\Gamma(\bar{B} \rightarrow D\ell^- \bar{\nu}_\ell)}{\Gamma(\bar{B} \rightarrow DX\ell^- \bar{\nu}_\ell)}$	$22.7 \pm 1.4 \pm 1.6$	$21.5 \pm 1.6 \pm 1.3$	
$\frac{\Gamma(\bar{B} \rightarrow D^* \ell^- \bar{\nu}_{\ell})}{\Gamma(\bar{B} \rightarrow DX \ell^- \bar{\nu}_{\ell})}$	$58.2 \pm 1.8 \pm 3.0$	$53.7 \pm 3.1 \pm 3.6$	*
$\frac{\Gamma(\bar{B} \to D^{**}\ell^- \bar{\nu}_\ell)}{\Gamma(\bar{B} \to DX\ell^- \bar{\nu}_\ell)}$	$19.1 \pm 1.3 \pm 1.9$	$24.8 \pm 3.2 \pm 3.0$	

- PDFs build on exclusive data samples
- Comparable precision to current world average

Kerstin Tackmann

- $\star \left| V_{ub}
 ight|$ from exclusive $B
 ightarrow \pi \ell
 u$
 - ★ Currently limited by Lattice QCD FF uncertainties (untagged)
 - ★ Tagged analyses will benefit from increased statistics
- $\star \left| V_{ub}
 ight|$ from inclusive $B
 ightarrow X_u \ell
 u$
 - \star First measurement directly using $B o X_s \gamma$ spectrum
- $\star \left| V_{cb}
 ight|$ and FF in $B
 ightarrow D^* \ell
 u$
 - ★ Limited by FF uncertainties
- ★ Currently higher precision from inclusive determinations
 - \star $|V_{cb}|$: 2% vs. 4% $|V_{ub}|$: 8% vs. 14%
- \star Understanding composition of $B o X_q \ell
 u$ important for $|V_{ub}|$ and $|V_{cb}|$

 \star Active experimental and theoretical efforts to improve precision of $|V_{qb}|$

Backup Slides

The BABAR Detector

 \star PEP-II is "asymmetric *B*-factory":

- $\star e^-(9\,{
 m GeV})e^+(3.1\,{
 m GeV}) o \Upsilon(4S) o Bar{B}$
- \star Collected $\sim 400\,{
 m fb^{-1}}$ (440 million $Bar{B}$) between 1999 and now

 ϕ_B = angle between the direction of the B momenta \vec{p}_B and the plane defined by the $D^{(*)}\ell_{\text{tag}}$ and $\pi\ell_{\text{sig}}$ momenta, $\vec{p}_{D^{(*)}\ell}$ and $\vec{p}_{\pi\ell}$

- \star Select leptons with $p_\ell > 1.2\,{
 m GeV}$
- \star Reconstruct $D^* o D^0 \pi$, $D^0 o (K\pi,\,K\pi\pi^0,\,K\pi\pi\pi)$

Estimate backgrounds

★ Combinatoric background

 \star Other ($b
ightarrow c\ell
u$) background

$$\Delta M = m(D^0\pi) - m(D^0)$$

 $\cos heta(B,D^*\ell)$

- \star Tag $B
 ightarrow D^{(*)}Y$ with $Y = n \, K + m \, \pi$ ($\sim 0.4\%$ efficiency)
 - ★ High purity
 - \star Signal yields $31\pm7~(B^0)$, $26\pm7~(B^+)$
- ★ Use missing mass to select signal
- \star Normalize to $B o X \ell
 u$ (3 bins of q^2)

$$egin{aligned} \star \mathcal{B}(B^0 & o \pi^- \ell^+
u) / 10^{-4} \ B^0 &: 1.07 \pm 0.27_{\mathrm{[stat]}} \pm 0.15_{\mathrm{[syst]}} \ B^+ &: 1.52 \pm 0.41_{\mathrm{[stat]}} \pm 0.20_{\mathrm{[syst]}} \end{aligned}$$
 (isospin)

232M $B\bar{B}$ [hep-ex/0607089]

232M $Bar{B}$ [hep-ex/0607089]

\star Tag $B o D^{(*)} \ell u$

- ★ High purity, but small efficiency ★ Signal yields 57^{+13}_{-12} (B^0), 92^{+26}_{-24} (B^+)
- ★ Fit to $\cos^2 \phi_B$ to select signal (angle between *B* momenta and $D^*\ell - \pi \ell$ plane)
- \star Measure ${\cal B}(B o \pi\ell
 u)$ in 3 bins of q^2

$$egin{aligned} \star \mathcal{B}(B^0 & o \pi^- \ell^+
u) / 10^{-4} \ B^0 &: 1.12 \pm 0.25_{\mathrm{[stat]}} \pm 0.10_{\mathrm{[syst]}} \ B^+ &: 1.36 \pm 0.33_{\mathrm{[stat]}} \pm 0.15_{\mathrm{[syst]}} \end{aligned}$$
 (isospin)

