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MiniBooNE's Motivation: The LSND signal

% For v overview see Andre and

% 175 _ o Boam Excoss Bonnie's talks later this morning
~: ! V. inv.
L; sl S b, v, @ LSND found an excess of v in v, beam
§ : BEE pEye’In @ Signature: Cerenkov light from e+ with
12.5 EEEE other delayed n-capture (2.2 MeV)
or 5 @ Excess: 87.9 + 22.4 + 6.0 (3.80)
7'5; @ Under a 2v mixing hypothesis:
5| e _ 1.27 L Am?
P(V;—Ve) = sin®(26) sinz( = )
25| E
. = 0.2454+0.067 +0.045 %

04 06 038 1 1.2 1.4
L/E, (meters/MeV)
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MiniBooNE's Motivation: The LSND signal

% For v overview see Andre and

(73]
@ 17510 o Boom Excoce Bonni_e's. taH<_s later this morning
I : S @ LSND found an excess of ve in v, beam
E 15 - R Ve
§ i EEE pE.en @ Signature: Cerenkov light from e+ with
12'5:_ EEE  other delayed n-capture (2.2 MeV)
or = @ Excess: 87.9 + 22.4 + 6.0 (3.80)
7'5; @ Under a 2v mixing hypothesis:
51 . _ _ 1.27 L A
_ o P(V;—Ve) = 31112(29) sin’ ( 7 )
25|
: = 0.24540.067 £ 0.045 %
04 06 08 1 12 14 N LSND
L/E, (meters/MeV) “‘g N \_;u%\_;e .
@ LSND Am2 ~ 1 eV2 impossible to reconcile ) ;
with other two measured mixings in 3vworld " ¢
@ Requires extraordinary physics! 0’k Atmospheric
- Sterile neutrinos hep-ph/0305255 i VD Vx
- Neutrino decay hep-ph/0602083 a3
- Lorentz/CPT violation hep-ex/0506067 oL Solar MSW
= Extra dimensions hep-ph/0504096 - Ve ?Vx
@ Unlike atmos and solar...LSND unconfirmed e T Y B
.2
sin"20
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The MiniBooNE design strategy

/UT_ oscillations?
= F— -

i ') L
m‘ i o .,:‘.;‘;;‘ - K+ @ ﬁ
FNAL booster target and horn

decay region
(8 GeV protons) (174 kA) (5y0 mg) dirt detector

(~500 m)

Start with 8 GeV proton beam from FNAL Booster
Add a 174 kA pulsed horn to gain a needed x 6

Requires running v (not anti-v) to get flux

Pions decay to v with E, in the 0.8 GeV range

Place detector to preserve LSND L/E:
MiniBooNE: (0.5 km) / (0.8 GeV)
LSND: (0.03 km) / (0.05 GeV)

@ Detectv interations in 800T pure mineral oil detector
- 1280 8" PMTs provide 10% coverage of fiducial volume

=% 240 8" PMTs provide active veto in outer radial shell
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Key points about the signal

Muon candidate
sharp ring, filled in
LSND oscillation probability is 0.3% V “_
After cuts, MiniBooNE has to be able to find H |
~300 ve CCQE interactions in a sea of :W1L

~150,000 v, CCQE Vp

@ Intrinsic ve background

L &

- Actual ve produced in the beamline from

muons and kaons Electron candidate

fuzzy ring, short track

-# |rreducible at the event level Vo
| | i~ — €
-& E spectrum differs from signal |W+
@ Mis-identified events i
- v, CCQE easy to identify, i.e. 2 “subevents” n p

instead of 1. However, lots of them.

- Neutral-current (NC) 0 and radiative A are Pi0|r|1 Ca_ndildate
rarer, but harder to separate two "e-like" rings

== Can be reduced with better PID M
@ MiniBooNE is a ratio measurement with the i
v, constraining flux X cross-section o LI

N A N
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Blind analysis in MiniBooNE

@ The MiniBooNE signal is small but relatively easy
to isolate

@ As data comes in it is classified into 'boxes'

@ For boxes to be opened to analysis they must be Other
shown to have a signal < 1o

@ In the end, 99% of the data were available prior to
unblinding...necessary to understand errors

Chris Polly, Pheno07, 7 May 2007 7



Beam Flux
Prediction

Y

X=Section
Model

¢

Flux Prediction

Optical
Model

PN

Point Source
Recon

f¢

Simultaneous
Fit to\’u &Ve

Chris Polly, Pheno07, 7 May 2007

Track Based
Recon

f¢

Pre-Normalize
to VH; FitV;




d“oidpd®, (mb c/(GeV sr))

Pions:

Meson production at the target

Kaons:

K* Production Data and Fit {Scaled to Py, = 8.89 GeV)

N % =0.015

T R Lo
0 2.5

P (GeV,/c)

B, =0.135

HARP P,_,=8.9GeV
250 F 7 T '1' T T LI B I B L
200 F (=4 = 6=45 mrad e 8=75 mrad .
150 | : 1
100 F .
200 T : ] Y
150 b JE: 6=105 mrad b 6=135 mrad
100 G T V. ]
50 [ t‘ _ ‘xn
R s
200 F ' = ' T
150 _ #=165 mrad a p=195 mrad
100 — I .
0 e o e
1 2 3 4 5 1 2 3 4 5
p.(GeV) p.(GeV .
HARP colla)boratlon,
hep-ex/0702024
@ MiniBooNE members joined the HARP
collaboration (% see L. Coney talk later today!")
-+ 8 GeV proton beam
- 5% A Beryllium target
@ Data were fit to Sanford-Wang

parameterization

0 5
P« (GeV/¢)
e
o 8, = 0.225
~, 10
Mb
st
e '|5III
Pe (Gev/c)
o
10-24 GeV range
o
o
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P = 0.045

Lo I
Q 2.5

P (GeV/c)

w=0.175

g T R - T s
Pk (GeV/c)

O Aleshin 9.5 GaV
® Allaby 12.2 GeV

¢ Voronsov 10,1 GeV
O Abhott 14.6 GeV

# Dekkers 20.9 GeV * FEichten 24.0 GeV

* Marmer 12.3 GeV

Kaon data taken on multiple targets in

Fit to world data using Feynman scaling
30% overall uncertainty assessed



Final neutrino flux estimation

v /v, = 0.5%

Flux /0.1 GeV

“Intrinsic” v, + v_ sources:
u - e v, v, (52%)
Kt > et v, (29%)
KOs mev, (14%)
Other ( 5%)

=

Fraction of v

Antineutrino content: 6%
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-
N

Nuance Monte Carlo .

D. Casper, NPS, 112 (2002) 161 3 :
T 1 TOTAL + |
@ Used to predict rate of specific v interactions Eo,a I b LA
lNiE:
@ World data for various channels shown at right ’Z.}“ % | i
o 0.6 &
@ Expected interaction rate in MiniBooNE (before < Qi Y +
cuts) shown below 3 04
T
:Z;t 0.2
v \Y . oL 7
! ! Multi = 107!
~ NC 0 ggo, 4%
Z +
P~ CC O Ba% CC QE
039%
Vl [
VZ .
\/ CC ntm25% wt
n
W+ n+ p
p — =<, 16%

w NC EL .




Optical Model

Beam Flux
Prediction

i
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Y
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i
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].00 - | 1 1 L 1 1 T T L T v
C —— JHU l cm Oil-Water

Extinction or Fluorescence Rate (1/m)

001

Light propagation in the detector

Extinction Rate for MiniBooNE Marcol 7 Mineral Oil

10 |

: /’( I, @@ Rayleigh Scattering (measured isotropic)

\ \\ -+ +- Rayleigh Scattering (anisotropic )

T \ Sum of Fluorescence Rates =

| X —— Floor 4 -

~ =

|| e — Floor 3 .

| g N Floor 2 N

| \ v —— Floor 1 |

0.1F

—— JHU l em Oil-Cyclohexane
wo FNAL1em
---- FNALZcm
----- FNALS cm
—— FNAL1lOcm
— — MiniBooMNE L.6 m
@@ MiniBooNE 1.6 m variable length

— — Rayleigh Scattering (Isotropic)

I 1 I PR [P T ! I |

250 300 350 400 450

Wavelength (nm)

@ Optical model is very complex

Timing Distribution for Laser Events

*______.prompt light

late-pulsing

dark noise reflections

scattering (tail)

!

Lo v b b v b b by
—40 =20 o 20 40 &0 80 100
corrected time (ns)

probability/(0.31 ns)
|

pre-pulsing

g

Michel electron t distribution

-+ Cerenkov, scintillation, fluorescence 3 oo

- PMT Q/t response g0t
== Scattering, reflection, prepulses 2“”3;‘
@ Overall, about 40 parameters 510%
10°L

-40 -20 0 20 40 60 80 100 120 140 160

Time of PMT Hit (Vertex corrected) [ns]

Chris Polly, Pheno07, 7 May 2007 14

)



Tuning the optical model

Using Michel electrons...

P | P Using NC elastic v interactions...

0 R )

U / (VA v

- N = 0.44-
s r *  Mar05 . '8 s Data |
5 F ° o o £ 0.425 . Novos (extinction) T
g 1157 e Nov0s (e>ft|n.ct|c.)n) = 0.4 —=— Apr06 (scintillation) —f—
= - = Apr0O6 (scintillation) > 0.380 —— May06 (fluorescence) _+_
< F v Mayo06 (fluorescence) o C ——
s 1 , X 0.36F e
s - Inward (U er < -0.5) Outward (U er >0.5) o 0 342_ _:__*_
St - S, . =+
S e, f | £ o —y—
5 F X SUPUPe S e x = 0.3F ——
Vg i, e — e T - T S £ C
g PTTTEERRSE IR T 5 028" L
¥y i R = - - E ——
0.95] o o 0.265" —— - =
C | | | | | c 0 24:_ —— . .
400 200 0 200 400 O Y.ear —
ReconstructedR(XSignofU.r)[cm] "G Evvo b b b b P v By v b by g
@ 40 60 80 100 120 140 160 180 200 220
L

Number of PMT Hits (= Energy)
@ |Initial optical model defined through many benchtop measurements

@ Subsequently tuned with in situ sources, examples
- Left: Michel e populate entire tank, useful for tuning extinction

- Right: NC elastic n interactions below Cerenkov threshold useful
for distinguishing scintillation from fluorescence

w Chris Polly, Pheno07, 7 May 2007 15
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TBL Analysis: Separating e from n

v, CCQE events (2 subevent)

@ Analysis pre-cuts .
_—— Only 1 SUbevent i g —Mi::teCar\o %600007 o 500 |
%muu: ) 50000 _ d a.ta. 0007
— VetO hItS < 6 %muo; e, Eioooo— MC ;ZZ—
= Tank hits > 200 =4 e Fioit
== Radius < 500 cm S ooy e
e e e ey R AT S TS RS SRR O 20 4bo b0 800 1000 1200
Veto Hits Tank Hits
0.3 e
@ Eventis a collection of PMT-level info (q,t,X) e
@ Form sophisticated Q and T pdfs, and fit for 7 .
track parameters under 2 hypotheses 0.1
- The track is due to an electron 3
-% The track is coming from a muon :';
o ozl
E 99¢ 0 1:_ ‘,
L L*':" #
0.2
-ﬂlal_ 1 11 | | 1 1 | I 1 1 | 1 11 | 1 | 1 | 11 1 | 1

ha
(=]

0 400 600 800 1000 1200 1400
fitted E (MeV)
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Separating e from =0

@
@ Extend fit to include two e-like tracks -0.05F
@ Very tenacious fit...5 minutes per event = odb kY
@ Nearly 500k CPU hours used 3  [anEcs
8-0.15)
-0.2F ‘
' LA, kY . .DVFNCR{]
-0.25¢ . CCQE
-0 3:_!_ 1 I I | 1 I‘ 1 | i 1 1 | 1 1 1 | 1 1 1 | 1 1 1 | 1
2200 400 600 800 1000 1200 1400
300
250 @V, NC
o PO T T T . CCQE
> - — Monte Carlo Simulation: o . i S - -
= 2000 —— NC7° - % 200: : . B
n - ® Data N E, dg :
2 C ] « B egy
S 1500~ O — o 15078 s '
- S ] £ [ >
W= i T fais
loool- 2 . £ 1001
C ] = E
500/ - =
O: Ll Lo b Ly : ‘ " .“
0 50 100 150 200 250 300 350 400 450 500 | i 600 80
Reconstructed Mass (MeV/c?) fitted E (MeV)
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TBL Analysis: Expected event totals

Stacked backgrounds: 475 MeV - 1250 MeV
Ml v v« 94
R e
0 v * 132
T e
> 1.45 dirt events L 62
§ 1 2;_ = A— Ny dirt 17
T 1= other
: £ ---- LSND best-fit signal A->Ny 20
0.8 AmP=1.2 eV? other 33
- sin%(26)=0.003
- total 358

LSND best-fit V.oV, 126

400 600 800 1000 1200 1400
reconstructed E  (MeV)
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BDT Reconstruction

BDT Resolution:

@ Same pre-cuts as TBL (taking R from different reconstruction) _
vertex: 24 cm
@ Different reconstruction: direction: 3.8°
—s Treats particles more like point sources, i.e. not as careful about dE/dx energy 14%
-& Not as tenacious about getting out of local minima, particularly with
pion fit TBL Resolution:
- Reconstruction runs nearly 10 times faster vertex: 22 cm
@ To make up for the simple fit, the BDT analysis relies on a form of direction: 2.8°
machine learning, the boosted decision tree. Byron P. Roe, et al., energy 11%
NIM A543 (2005) 577.
@ Boosting Step 1: Define input variable ool I"|. W core
- Low-level (# tank hits, early light fraction, etc.) "°°°§ : "._ vy CCQE
-s High-level (Q2, U, fit likelihoods, etc.) :::: " Evisible Examples
- Topology (charge in anuli, isotropic light, etc.) 2°°°§
@ A total of 172 variables were used " ",CCQE muon kinetic energy (GeV) '1
o [
@ All 172 were checked for agreement within errors

6000

in 5 important 'boxes' (v, CCQE, NC =0, NC-elastic,
Michel decay e, 10% closed)

F T N Y TV T N S O A
n-1 08 -06 -04 -0.2 -0 02 04 06 0.8 1
VHCCQECOSGP
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Decision tree example ~Variable. 1

(sequential series of cuts
based on MC study) Variable.2

si

“M

higree

1906/11828

@ Optimal cuts on each variable are
determined

-1 if background

@ Hard to identify backgrounds are
iteratively given more weight

@ Many trees built
@ PID 'score' established fromn ¢insempie

(NsignaI/kagd) :>%M

S i g/_lue/ Stanen chiqres
bkgd-like

9755/23695

Variable 3
signal(red) and background(blae)

bkgd-like .
sig-like

g 30,245/16,30%
7849/11867 K

sig-like pkgd-like

20455/3417
9790/12888

. . etc.
An event gets aweightof Lifsignal J R 3 3330830388

This tree is one of many possibilities...

Chris Polly, Pheno07, 7 May 2007
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Boosting PID score

BDT Analysis: Signal/background regions

[ non-oscillation events ) . .
I+~ oscilation events @ Signal prediction (red) versus all bkgs (gray)
signal selection cuts

. '_ sideband selection cuts

"IIIIl‘II‘IIlIIIIlIIII|IIII

0.5 1 1.5 2 2.5 3
E9E (GeV)
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BDT Analysis: Signal/background regions

lllllllllllllll

Boosting PID score

[ non-oscillation events
Il .- oscillation events

signal selection cuts

; sideband selection cuts

immediately adjacent to signal region

n 500, 27F BOY, PID sideband
€ E . Data 5 r siaeban
% 4500 &t
w 4005— — Mente Carlo o000 x3dof=7.6/8 i\?ﬂ;ﬂﬂm
F sideband region (300-1600 MeV) [ Prob.=47.4% I v. from K*
350% statistical errors only - v, from K®
E 3 =® misid
3005 1500~ dela
E [ o
2502— S other
20°i 1@1 Const Syst. Error
150F —
1005
50 1
ofl b b i b L P S I S SRR BRI
-10 -5 0 5 15 20 0.5 1 1.5 2 25 3
Boosting PID Score ESE (GeV)

Chris Polly, Pheno07, 7 May 2007

@ Signal prediction (red) versus all bkgs (gray)
@ Start by looking at data in 'sideband'...region

24



BDT Analysis: Signal/background regions

20
g - [ non-oscillation events ) L.
o 15 I+~ oscilation events @ Signal prediction (red) versus all bkgs (gray)
=] E signal selection cuts . . . .
a 10 . —— sideband seloction cuts @ Start by looking at data in 'sideband'...region
£ St B immediately adjacent to signal region
o
@ @ Satisfied with agreement? Finalize background
prediction
o 500
= - Monte Carlo Prediction - v,
E 4501
E B v. fromu
.I....I 1 1 1 1 1 1 | I | I 11 | | 400'5_ . VE from K+
0.5 1.5 2 3 350 v, from K°
- " misid
%::z, oo g- : BOY, PID sideband :elta
ﬁ‘mo; — Monte Carlo w o000 xZ/dof=76/8 i\t{:ﬁaﬂm .dirt
350- it e P b e other
3005— 1500:— -
250- —.
200; Const Syst. Errer
150" ¢
1005 i
502— |
s NS B S S+ S 04 06 08 1 12 14 16
Boosting PID Score ESE (GeV)

E’* (GeV)

Chris Polly, Pheno07, 7 May 2007 25




Systematic Error Analysis and Results

Chris Polly, Pheno07, 7 May 2007
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Final error budget (diagonals only...greatly simplified)

Source of uncertainty TBL/BDT Constrained Reduced by Beam P
on v background  errorin% by MB data tyingv, tov, I
Flux from n*/u+ decay 6.2 / 4.3 v v e
Flux from K+ decay 3.3/1.0 v v {
Flux from K° decay 1.5/ 0.4 v v ode
Target/beam models 2.8 / 1.3 v | PN
V-Cross section 12.3 / 10.5 Vv Vv e hecan
NC = yield 1.8/ 1.5 v ¢ ¢
Dirt interactions 0.8/3.4 v
Optical model 6.1/ 10.5 v V ¥ —
DAQ electronics model 7.5/ 10.8 v O e e
@ Every checkmark in this table could @ Errors arise from common uncertainties
easily consume a 30 minute talk in flux, xsec, and optical model
- All error sources had some in situ @ Reconstruction and PID unique

constraint - BDT had higher signal-to-background

- Some reduced by combined fit to v,
and ve

=& TBL more impervious to systematics
- About 50% event overlap

w Chris Polly, Pheno07, 7 May 2007 27



10%F

—h
o
TTT

IAm?l (eV3/c?)
-

—
S

102

[ LsNDg0% C.L.
- | ] LsSND99% C.L.

BDT/TBL sensitivity comparison

— MiniBooME 90% C.L. sensitivity
---- BDT analysis 30% C.L. sensitivity

107 102 107 1

Sensitivity is determined from
simulation only (no data yet!)

Decided before unblinding that
the analysis with higher sensitivity
would be the final analysis

TBL is better at high Am2
90% CL defined by Ay2 = 1.64
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After many man-years and CPU-hours...
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Finally we see the data in the signal region...

J 2v oscilaton MiniBooNE data
- 1 analysis threshold . ) )
2.5r ,Afs + expected background @ TBL sh.ows no sign of an excess in the .
- ' ... BG + best-fit oscillation analysis region (where the LSND signal is
> 2-“';"* — v, background expected for the 2v mixing hypothesis)
= | 5 ' .
S 5E i i Ve background @ Visible excess at low E
'E I
) = |
& 1.0 _L ]
- B E:ﬂ_
0.5~ ] = £ F  bestiit sk : (001000, 0.0000) § e
S T S T . e Y S 4501 bestfit IL.: 122 +- 0.000
- = —_ ) 4DD_— bast fit M, 1.00 +- 0,000 — To Sunakbkod
300 600 900 1200 1500 3l = bestiithN, . :1.00--0.000 e Ty B
reconstructed E, (MeV) ‘“""5_ ¥2,,: 1088, dof: 13, Prob: 0.6206 | - Consbiained Srsl. o
oo
@ BDT has a good fit and no sign of an 7m0 d—
excess, in fact the data is low relative to m§—1=_=;z:
the prediction S g
150 B [T \_ﬁ
@ Also sees an excess at low E, but larger 100 S —
normalization error complicates n=
interpretation -

Y L I e -

E;" (GaV)
Neither analysis shows an evidence forv,— v,
appearance in the analysis region
w Chris Polly, Pheno07, 7 May 2007 30



102

—h
=]

IAm?l (eVZ/c?)
—

-
S

107

Fit results mapped into sin2(26) AmZ plane

l“IF.‘ ) I

sin(20) upper limit

— MiniBooME 90% C.L
---- BODT analysis 90% C.L.

] LsND 90% C.L.
|| LsNDgg% C.L.

103

10?2 10

sin?(20)

Chris Polly, Pheno07, 7 May 2007

1

Energy-fit analysis:
- solid: TBL
- dashed: BDT

Independent analyses in good
agreement

Looks similar to sensitivity because of
the lack of a signal

Had there been a signal, these curves
would have curled around and closed
into contours

MiniBooNE and LSND incompatible at
a 98% CL for all Am2 under a 2v
mixing hypothesis.

31



Future work for MiniBooNE

@ Papers in support of this analysis @ Lots of work on cross-sections

== NC 10 background measurement @ MiniBooNE has more v, interactions

- v, CCQE analysis than any prior experiment and they
are in an energy range relevant to

@ Continued improvements of the v future v experiments

oscillation analysis

= Combined BDT and TBL @ Event count before cuts:
_ : : v channel events
- More work on reducing systematics T channels S0k
@ Re-examine low E backgrounds and CC quasielastic 340k
significance of low E excess NC elastic 150k
CCrtr 180k
- D.Ei « data - expected background CCm 30k
g "4 -- best-fit to full range NC 1° 48k
E 0.6 — 5in°(28)=0.004, Amf=1.0 eV° NC 1 27k
& - — sin®(20)=0.2, AmP=0.1 eV?
a 04 |
& L | — @ Currently running in anti-
CHEN S ‘#l ______ - v mode for anti-v cross
0O 1 ] { 1 T. I _'E—*— IIII . sections
300 60D 900 1200 1500 3000

reconstructed E, (MeV)
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