Evidence for D⁰-D⁰ Mixing Ray F. Cowan Pheno 07 May 7, 2007 Madison, Wisconsin

Massachusetts Institute of Technology

Neutral meson mixing and CP violation

Recent BABAR charm mixing results

$D^0 ightarrow K \pi$ analysis

hep-ex/0703020 (submitted to PRL)

Recent BELLE charm mixing results

Lifetime difference analysis

hep-ex/0703036 (submitted to PRL)

 $D^0
ightarrow K_s \pi \pi$ analysis

arXiv:0704.1000

Summary

Why would observation of charm mixing be interesting?

It would *complete the picture* of quark mixing already seen in the K, B, and B_s systems.

K — PR 103, 1901 (1956); PR 103, 1904 (1956).

B — PL B186, 247 (1987); PL B192, 245 (1987).

*B*_s — PRL 97, 021802 (2006); PRL 97, 242003 (2006).

It would provide new information about processes with *downtype quarks* in the mixing loop diagram.

It would be a significant step toward observation of *CP violation* in the charm sector.

It could indicate *new physics*.

Ray F. Cowan Evidence for $D^0 - \overline{D}^0$ Mixing

Short- and long-distance effects

Short-distance contributions from mixing box diagrams primarily affect x **b** quark is CKM-suppressed s and d quarks are GIM suppressed Expect O(10⁻⁵) or less Long-distance contributions primarily affect y **Non-perturbative effects** Expect O(10⁻²) or less New physics would be indicated if $x \gg y$

CP violation is observed

Short-distance

Patricia Ball, hep-ph/0703245, Moriond 2007: "The central problem of all these calculations is that the D is too heavy to be treated as light and too light to be treated as heavy."

Study $D^0 - \overline{D}^0$ mixing by tagging the D^0 flavor at production and at decay.

For $x, y \ll 1$

Allows for a strong phase difference $\delta_{K\pi}$ between CF and DCS direct decay

 $x' = x \cos \delta_{K\pi} + y \sin \delta_{K\pi}, \qquad y' = -x \sin \delta_{K\pi} + y \cos \delta_{K\pi}$

This phase may differ between decay modes. And may vary over phase space for multi-body decays.

CP violation (CPV) can be classified as occurring

- In direct decay: $|\overline{A}_{\overline{f}}/A_f| \neq 1$ where $A_f = \langle f | H_w | D^0 \rangle$, $\overline{A}_{\overline{f}} = \langle \overline{f} | H_w | \overline{D}^0 \rangle$
- In mixing: $|q/p| \neq 1$
- In the interference between them: Im $\left(\frac{q}{n}\frac{A_f}{A_f}\right) \neq 0$

CPV introduces an asymmetry

in the time-dependence between D^0 and \overline{D}^0 decays

$$\frac{d\Gamma}{dt}[|D^{0}(t)\rangle \to f] \propto e^{-\Gamma t} \times \left[R_{\rm D} + \sqrt{R_{\rm D}} \left|\frac{q}{p}\right| (y'\cos\varphi - x'\sin\varphi)\Gamma t + \left|\frac{q}{p}\right|^{2} \frac{x'^{2} + y'^{2}}{4} (\Gamma t)^{2}\right]$$
$$\frac{d\Gamma}{dt}[|\overline{D}^{0}(t)\rangle \to \overline{f}] \propto e^{-\Gamma t} \times \left[R_{\rm D} + \sqrt{R_{\rm D}} \left|\frac{p}{q}\right| (y'\cos\varphi + x'\sin\varphi)\Gamma t + \left|\frac{p}{q}\right|^{2} \frac{x'^{2} + y'^{2}}{4} (\Gamma t)^{2}\right]$$

where φ is the phase angle of $\lambda_f = \left(\frac{q}{p}\frac{A_f}{A_f}\right)$.

Ray F. Cowan Evidence for $D^0 - \overline{D}^0$ Mixing

 $D^0 \rightarrow K\pi$ Analysis Method

Ray F. Cowan Evidence for $D^0 - \overline{D}^0$ Mixing Pheno 07 Madison, Wisonsin May 7, 2007

counts/0.1 MeV/c²

Ray F. Cowan Evidence for $D^0 - \overline{D}^0$ Mixing

Fitting is performed in *stages* to reduce demand on computing resources

All stages are *unbinned*, *extended maximum-likelihood* fits.

- 1. RS & WS $m_{K\pi}$, Δm fit. Yields PDF shape parameters $m_{K\pi}$, Δm categories.
- 2. RS lifetime fit.

 $m_{K\pi}$, Δm category shape parameters held constant. Yields D^0 lifetime τ_D and proper-time resolution parameters. Constrained by the large statistics of the RS sample.

3. WS lifetime fit.

Yields parameters describing the WS time dependence.

The WS fit is performed for three different assumptions:

- 1. Mixing and *CP* violation (CPV)
- 2. Mixing but no CPV
- 3. No mixing or CPV

The $m_{K\pi}$, Δm fit determines the WS b.r. $R_{WS} = N_{WS}/N_{RS}$

BABAR (384 fb⁻¹): R_{WS} = (0.353 \pm 0.008 \pm 0.004)% (hep-ex/0703020, sub. to PRL) BELLE (400 fb⁻¹): R_{WS} = (0.377 \pm 0.008 \pm 0.005)% (PRL 96, 151801 (2006))

Ray F. Cowan Evidence for $D^0 - \overline{D}^0$ Mixing Pheno 07 Madison, Wisonsin May 7, 2007

No-mixing decay time fit

Fit RS, WS proper-time for:

RS & WS signal, background yields

D⁰ lifetime τ_D

Proper-time resolution

WS combinatoric shape parameter

Consistency check

Fitted τ_D = (410.3 ± 0.6) fsec (statistical error only) (PDG 2006: 410.1 ± 1.5 fsec)

Residuals show difficulties with the no-mixing fit

Residuals = data - fit

0.1445 GeV/*c*² < *∆m* < 0.1465 GeV/*c*²

Mixing decay time fit

0.1445 GeV/*c*² < *∆m* < 0.1465 GeV/*c*²

Ray F. Cowan Evidence for $D^0 - \overline{D}^0$ Mixing

If mixing is present, it should be evident in an R_{WS} rate that increases with decay-time. Perform the R_{WS} fit in five time bins with similar RS statistics. Cross-over occurs at $t \approx 0.5$ psec

Similar to residuals plot.

Dashed line: standard R_{WS} fit (χ^2 =24). Solid, red line: independent R_{WS} fits to each time bin (χ^2 = 1.5).

Mixing fit likelihood contours

30 • Best fit Contours in y', x'^2 BABAR Best fit, x'² ≥ 0 preliminary computed from 20 + No mixing: (0,0) -2∆ În *L* $2\Delta \ln \mathcal{L} = 0.7$ Best-fit point is in the y′ / 10⁻³ 10 non-physical region $x'^{2} < 0$ 1 - CL = $2\Delta \ln \mathcal{L} =$ 3.17 x 10⁻¹ (1σ) 1σ contour extends 4.55 x 10⁻² (2σ) into physical region 2.70 x 10^{-3} (3 σ) **-10**⊢ 6.33 x 10⁻⁵ (4σ) Correlation: -0.29 5.73 x 10⁻⁷ (5σ) Contours at 1_o intervals **Contours include** -20 systematic errors -1.0 -0.5 0.0 $x'^{2} / 10^{-3}$ The no-mixing point is at the 3.9σ contour R_D : (3.03 ± 0.16 ± 0.10) x 10⁻³ No indication of CP $x^{'2}$: (-0.22 ± 0.30 ± 0.21) x 10⁻³ violation y': $(9.7 \pm 4.4 \pm 3.1) \times 10^{-3}$

Ray F. Cowan

Evidence for $D^0 - \overline{D}^0$ Mixing

23.9

1.0

0.5

BELLE and BABAR are consistent within 2σ

Evidence for $D^0 - \overline{D}^0$ Mixing

May 7, 2007

Belle lifetime difference

Lifetime difference reconstruction

Ray F. Cowan Evidence for $D^0 - \overline{D}^0$ Mixing

$\bigcup_{\text{BELLE}} \text{Belle } D^0 \rightarrow K_s \pi \pi \text{ Analysis}$

Time-dependent, Dalitz-plot mixing analysis

Uses $D^{*+} \rightarrow D^0 \pi^+$, $D^0 \rightarrow K_s \pi \pi + \text{c.c. decays}$

Observe time dependence of *D*⁰ decays

More complex due to Dalitz plot structure

Analysis assumes *CP* conservation

D⁰ decay amplitude is given by

 $M(m_{-}^{2}, m_{+}^{2}, t) = \mathcal{A}(m_{-}^{2}, m_{+}^{2}) \frac{e_{1}(t) + e_{2}(t)}{2} + \frac{q}{p} \overline{\mathcal{A}}(m_{+}^{2}, m_{-}^{2}) \frac{e_{1}(t) - e_{2}(t)}{2}$

where \mathcal{A} and \mathcal{A} are amplitudes for decay to D^0 or \overline{D}^0 as functions of phase-space variables, and

 $m_{\pm} = \begin{cases} m(K_s, \pi^{\pm}) & D^{*+} \to D^0 \pi^+ \\ m(K_s, \pi^{\mp}) & D^{*-} \to \overline{D}^0 \pi^- \end{cases} \qquad e_{1,2}(t) = \exp\left(-i(m_{1,2} - i\Gamma_{1,2}/2)t\right)$

Measures *x* and *y*: no strong phase, sensitive to *x*

Ray F. Cowan Evidence for $D^0 - \overline{D}^0$ Mixing

Uses same discriminating variables to separate signal and background components as lifetime ratio analysis

Perform simultaneous, unbinned likelihood fit to m_-^2 , m_+^2 , and t Signal yield: 534,410 \pm 830 events, 95% purity

Ray F. Cowan Evidence for $D^0 - \overline{D}^0$ Mixing

Dalitz fit model

m²₊ (GeV²/c⁴) Refinement of Belle φ_3 measurement

13 BW resonances + non-resonant contribution

TABLE I: Fit results for Dalitz plot parameters.

Resonance	Amplitude	Phase (deg)	Fit fraction
$K^{*}(892)^{-}$	1.629 ± 0.005	134.3 ± 0.3	0.6227
$K_0^*(1430)^-$	2.12 ± 0.02	-0.9 ± 0.5	0.0724
$K_{2}^{*}(1430)^{-}$	0.87 ± 0.01	-47.3 ± 0.7	0.0133
$K^{*}(1410)^{-}$	0.65 ± 0.02	111 ± 2	0.0048
$K^{*}(1680)^{-}$	0.60 ± 0.05	147 ± 5	0.0002
$K^{*}(892)^{+}$	0.152 ± 0.003	-37.5 ± 1.1	0.0054
$K_0^*(1430)^+$	0.541 ± 0.013	91.8 ± 1.5	0.0047
$K_{2}^{*}(1430)^{+}$	0.276 ± 0.010	-106 ± 3	0.0013
$K^{*}(1410)^{+}$	0.333 ± 0.016	-102 ± 2	0.0013
$K^{*}(1680)^{+}$	0.73 ± 0.10	103 ± 6	0.0004
$\rho(770)$	1 (fixed)	0 (fixed)	0.2111
$\omega(782)$	0.0380 ± 0.0006	115.1 ± 0.9	0.0063
$f_0(980)$	0.380 ± 0.002	-147.1 ± 0.9	0.0452
$f_0(1370)$	1.46 ± 0.04	98.6 ± 1.4	0.0162
$f_2(1270)$	1.43 ± 0.02	-13.6 ± 1.1	0.0180
$\rho(1450)$	0.72 ± 0.02	40.9 ± 1.9	0.0024
σ_1	1.387 ± 0.018	-147 ± 1	0.0914
σ_2	0.267 ± 0.009	-157 ± 3	0.0088
NR	2.36 ± 0.05	155 ± 2	0.0615

Dalitz plot distribution and projections. Fit result shown as solid line.

Ray F. Cowan Evidence for $D^0 - \overline{D}^0$ Mixing

(b) Ratio of decay-time distributions for $K^*(892)^+$ and $K^*(892)^-$ regions.

BABAR: $D^0 \rightarrow K\pi$ analysis $y' = [9.7 \pm 4.4 \text{ (stat.)} \pm 3.1 \text{ (syst.)}] \times 10^{-3}$ **BABAR: 3.9** or evidence for $x^{2} = [-0.22 \pm 0.30 \text{ (stat.)} \pm 0.219 \text{ (syst.)}] \times 10^{-3}$ mixing (stat.+syst.) $R_D = [0.303 \pm 0.016 \text{ (stat.)} \pm 0.010 \text{ (syst.)}]\%$ Submitted to PRL (hep-ex/0703020) Consistent with earlier mixing analyses BABAR $K\pi$, 2003: (-56 < y' < 39) x 10⁻³, x' < 11 x 10⁻³ (95% CL) Belle $K\pi$, 2006: (-28 < y' < 21) x 10⁻³, x' < 3.6 x 10⁻³ (95% CL) **Belle: lifetime difference analyses:** Belle, 2007: $y_{CP} = (1.31 \pm 0.32 \pm 0.25) \times 10^{-2}$ Belle: 3.2 or evidence for 3.2σ evidence for mixing mixing (stat.+syst.) **BABAR**, 2003: $y_{CP} = (0.9 \pm 0.4 \pm 0.5) \times 10^{-2}$ Belle: time-dependent $K_s\pi\pi$ (arXiv:0704.1000): $x = (0.80 \pm 0.29 \pm 0.17) \times 10^{-2}$ $y = (0.33 \pm 0.24 \pm 0.15) \times 10^{-2}$ 2.7σ evidence for mixing Evidence for *D*⁰-*D*⁰ mixing seen by both *BABAR* or Belle No evidence seen for CP violation by either experiment

Backup slides

Massachusetts Institute of Technology

Two illustrations

State starts as pure D^0 at t = 0Decays as D^0 or \overline{D}^0

Ray F. Cowan Evidence for $D^0 - \overline{D}^0$ Mixing Pheno 07 Madison, Wisonsin May 7, 2007

28

HFAG world averages for y_{CP} and R_M

Ray F. Cowan Evidence for $D^0 - \overline{D}^0$ Mixing Pheno 07 Madison, Wisonsin May 7, 2007

Time-dependent decay rate

The time-dependent decay rate of an initiallypure D^0 or D^0 can be written

$$D^{0}(t)\rangle = g_{+}(t)|D^{0}\rangle - (q/p)g_{-}(t)|\overline{D}^{0}\rangle$$

$$\overline{D}^{0}(t)\rangle = g_{+}(t)|\overline{D}^{0}\rangle - (p/q)g_{-}(t)|D^{0}\rangle$$

where $g_{\pm}(t) = \frac{1}{2}e^{-iMt - \frac{1}{2}\Gamma} \left(e^{-\frac{i}{2}\Delta Mt - \frac{1}{4}\Delta\Gamma t} \pm e^{+\frac{i}{2}\Delta Mt + \frac{1}{4}\Delta\Gamma t} \right)$

This yields the time-dependent decay rate

$$\frac{d\Gamma}{dt}[|D^{0}(t)\rangle \to f] \propto e^{-\Gamma t} \times \\ \left[\left(|A_{f}|^{2} + |(q/p)\overline{A}_{f}|^{2}\right)\cosh(y\Gamma t) + \left(|A_{f}|^{2} - |(q/p\overline{A}_{f}|^{2})\cos(x\Gamma t) + 2\operatorname{Re}((q/p)A_{f}^{*}\overline{A}_{f})\sinh(y\Gamma t) - 2\operatorname{Im}((q/p)A_{f}^{*}\overline{A}_{f})\sin(x\Gamma t)\right]\right]$$

Ray F. Cowan Evidence for $D^0 - \overline{D}^0$ Mixing

Systematics: decay time resolution

RS decay time fit with zero offset.

Perform a beam-constrained fit to the full decay chain $D^{*\pm} \rightarrow \pi_s^{\pm} D^0, D^0 \rightarrow K^{\mp} \pi^{\pm}$ Require fit probability > 0.001 $\delta t < 0.5 \text{ ps}$ -2 < t < 4 ps

Select the **D**⁰

CM $p_D > 2.5 \text{ GeV/}c$ *K*, π particle identification 1.81 < $m_{K\pi}$ < 1.92 GeV/ c^2 Select the D^{*+}

CM p_{π} < 0.45 GeV/*c* p_{π} > 0.1 GeV/*c* in lab frame 0.14 < Δ m < 0.16 GeV/*c*² If multiple *D**+candidates share tracks in the event:

Select candidate with greatest fit probability

Event selection, fitting procedures are *finalized before examining* the mixing results

Pheno 07 M Mixing May 7, 2007

Signal and backgrounds have differing behavior in $m_{K\pi}$ and Δm .

We define four categories:

Signal, random π_s , mis-reconstructed D^0 , and combinatoric.

Category	Description	Peaking Behavior
RS signal	$D^0 \to K^- \pi^+ \text{ signal}$	$m_{K\pi}$ and Δm
RS random π_s	Correctly-reconstructed D^0 combined with an	$m_{K\pi}$
	incorrect slow pion	
RS mis-recon. D^0	Mis-reconstructed D^0 from $D^0 \to K l^+ \nu, D^0 \to$	Δm
	$\pi l^+ \nu, \ D^0 \to \pi^+ \pi^-, \ D^0 \to K^+ K^-$	
RS combinatoric	Combinatoric background	non-peaking
WS signal	$D^0 \to K^+ \pi^-$ signal	$m_{K\pi}$ and Δm
WS random π_s	Correctly-reconstructed D^0 combined with an	$m_{K\pi}$
	incorrect slow pion	
WS mis-recon. D^0	Doubly mis-identified $D^0 \to K^- \pi^+$ decays and	Δm
	$D^0 \to \pi^+\pi^-, D^0 \to K^+K^-$ reflections	
WS combinatoric	Combinatoric background	non-peaking

Validation: fit for mixing in RS sample

Fit the RS data using the Events/0.1 ps WS mixing PDF $x^{2} = (-0.01 \pm 0.01) \times 10^{-3}$ $y' = (0.26 \pm 0.24) \times 10^{-3}$ The change in $-2\Delta \ln L$ is 1.4 A very stringent test **RS** sample 270× larger Pull than WS sample **Conclusion: D**⁰ decay-time distribution is properly described.

RS *mixing* fit projection in signal region 1.843 GeV/*c*²<*m*<1.883 GeV/*c*² 0.1445 GeV/*c*²<*∆m*< 0.1465 GeV/*c*²

Validation: fit for mixing in MC

Result of mixing fit to MC (which has no mixing). Contours are at 1σ, 2σ, and 3σ

Fit results for all three cases:

(1) No mixing or CPV; (2) mixing but no CPV; and (3) CPV and mixing. $R_{\rm D}$ changes between no-mixing and mixing fits.

Fit type	Parameter	Fit Results $(/10^{-3})$
No CP viol. or mixing	R_{D}	$3.53 \pm 0.08 \pm 0.04$
$N_{O}CP$	$R_{ m D}$	$3.03 \pm 0.16 \pm 0.10$
violation	x'^2	$-0.22\ \pm 0.30\ \pm 0.21$
VIOIAUIOII	y'	$9.7 \pm 4.4 \pm 3.1$
	$R_{ m D}$	$3.03 \pm 0.16 \pm 0.10$
$C\!P$	A_{D}	$-21 \pm 52 \pm 15$
violation	x'^{2+}	$-0.24\ \pm 0.43\ \pm 0.30$
allowed	y'^+	$9.8 \pm ~ 6.4 \pm ~ 4.5$
	x'^{2-}	$-0.20\ {\pm}0.41\ {\pm}\ 0.29$
	y'^-	$9.6 \pm 6.1 \pm 4.3$

Heavy flavor averaging group (HFAG) http://www.slac.stanford.edu/xorg/hfag/ Combine BABAR and Belle likelihoods in 3 dimensions: (R_D, x'^2, y')

Preliminary averages:

 $R_D = (3.31 \pm 0.13) \times 10^{-3}$ $x'^2 = (-0.01 \pm 0.20) \times 10^{-3}$ $y' = (5.1 \pm 3.2) \times 10^{-3}$

Pheno 07 Madison, Wisonsin May 7, 2007

Shown are the fits to right-sign data for $m_{K\pi}$ (left) and Δm (right).

Pheno 07 Madison, Wisonsin May 7, 2007

RS

RS proper decay-time fit

The parameters fitted are

 D^0 lifetime τ_D

Resolution parameters

Including a 3.6 fsec offset

Signal, background category yields

Consistency check

Fitted τ_D = (410.3 ± 0.6) fsec (statistical error only) (PDG 2006: 410.1 ± 1.5 fsec)

1.843 GeV/ c^2 < m < 1.883 GeV/ c^2 0.1445 GeV/ c^2 < Δm < 0.1465 GeV/ c^2

Generated >100,000 toys without mixing to test frequentist coverage

Ray F. Cowan Evidence for $D^0 - \overline{D}^0$ Mixing Pheno 07 Madison, Wisonsin May 7, 2007

All fits are over the full range shown in the plots 1.81 GeV/c2 < $m_{K\pi}$ < 1.92 GeV/c² and 0.1445 GeV/c² < Δm < 0.1465 GeV/c² A small correlation can be seen between $m_{K\pi}$ and Δm Define a signal region

1.843 GeV/ $c^2 < m_{K\pi} <$ 1.883 GeV/ c^2 and 0.1445 GeV/ $c^2 < \Delta m <$ 0.1465 GeV/ c^2

Fit D^0 and \overline{D}^0 decay-time dependence separately.

Ray F. Cowan Evidence for $D^0 - \overline{D}^0$ Mixing Pheno 07 Madison, Wisonsin May 7, 2007

42

List of systematics, validations

Systematics: variations in Functional forms of PDFs Fit parameters Event selection Computed using <u>full</u> difference with original value Results are expressed in units of the statistical error

Systematic source	R _D	У'	X ' ²
PDF:	0.59 σ	0.45 σ	0.40 σ
Selection criteria:	0.24 σ	0.55 σ	0.57 σ
Quadrature total:	0.63 σ	0.71 σ	0.70 σ

Validations and cross-checks Alternate fit (*R*_{ws} in time bins) Fit RS data for mixing $x'^2 = (-0.01 \pm 0.01) \times 10^{-3}$ $y' = (0.26 \pm 0.24) \times 10^{-3}$ Fit generic MC for mixing $x'^{2} = (-0.02 \pm 0.18) \times 10^{-3}$ $y' = (2.2 \pm 3.0) \times 10^{-3}$ Fit toy MCs generated with various values of mixing **Reproduces generated values** Validation of proper frequentist coverage in contour construction **Uses 100,000 MC toy** simulations

Ray F. Cowan Evidence for $D^0 - \overline{D}^0$ Mixing

