Evidence for Single Top Quark Production at DØ

PHENO 2007 Symposium

Shabnam Jabeen

7 May 2007

Corganitanette Verson Barger, Linda Dulan, Lina Everett, Francis Halzon, Tan Han Ichaici, Patrick Hisber, Thomas McLinuery, Frank Petriello, Devin Walker and Kathryn Zarwk

http://www.pheno.info/symposia/pheno07/

Outline

- Single Top Introduction and Motivation
- Event Signatures and selection
- Signal and Background Modeling
- Search Strategy
- Decision Tree Analysis
- Results with 1 fb⁻¹ Data

Single Top Overview

Experimental results (95% C.L.)

DØ	<i>tb</i> < 5.0 pb (37	70 pb ⁻¹)	DØ	<i>tqb</i> < 4.4 pb	(370 pb ⁻¹)		
CDF	<i>tb</i> < 3.2 pb (70	00 pb ⁻¹)	CDF	<i>tqb</i> < 3.1 pb	(700 pb ⁻¹)		
CDF	<i>tb+tqb</i> < 2.7 pb	Likeliho	Likelihoods (960 pb ⁻¹)				
	<i>tb+tqb</i> < 2.6 pb		Neural networks				
$tb+tqb = 2.7^{+1.5}_{-1.3} \text{ pb}$		Matrix e	Matrix elements (significance of 2.3 σ)				

Why Look for Single Top?

- Prediction of SM not observed so far
- Study Wtb coupling in top production
 - Measure $|V_{tb}|$ directly
 - Test unitarity of CKM matrix
 - Anomalous Wtb couplings
- Cross sections sensitive to new physics
 - s-channel: resonances (heavy W'boson, charged Higgs boson, Kaluza-Klein excited W_{KK}, technipion, etc.)
 - t-channel: flavor-changing neutral currents $(t Z/\gamma/g c/u \text{ couplings})$
 - Fourth generation of quarks
- Similar search for WH associated Higgs production
 - Backgrounds the same must be able to model them successfully
 - Test of techniques to extract a small signal from a large background

Event Signatures and Selection

- One isolated electron or muon
 - Electron $p_T > 15 \text{ GeV}, |\eta| < 1.1$
 - Muon p_T > 18 GeV, |η| < 2.0</p>
- Missing transverse energy > 15 GeV
- One b-tagged jet and at least one more jet
 - 2–4 jets with $p_T > 15$ GeV, $|\eta| < 3.4$
 - Leading jet $p_T > 25$ GeV, $|\eta| < 2.5$
 - Second leading jet p_T > 20 GeV

tt, W+jets, and multijets are the main processes that can mimic signal signatures

Signal and Background Modeling

Event Yields After b-Tagging

Before b-tagging

- Signal acceptances: *tb* = 5.1%, *tqb* = 4.5%
- S:B ratio for *tb+tqb* = 1:180
- To improve S:B select only events with b-jets in them

After b-tagging

Signal acceptances: *tb* = (3.2 ± 0.4)%, *tqb* = (2.1 ± 0.3)%

	Event Yields in 0.9 fb ⁻¹ Data Electron+muon, 1tag+2tags combined				
Source	2 jets	3 jets	4 jets		
tb	16 ± 3	8 ± 2	2 ± 1		
tqb	20 ± 4	12 ± 3	4 ± 1		
tt̄ →	39 ± 9	32 ± 7	11 ± 3		
<i>tt̄</i> → /+jets	20 ± 5	103 ± 25	143 ± 33		
W+bb	261 ± 55	120 ± 24	35 ± 7		
W+cc	151 ± 31	85 ± 17	23 ± 5		
W+jj	119 ± 25	43 ± 9	12 ± 2		
Multijets	95 ± 19	77 ± 15	29 ± 6		
Total background	686 ± 41	460 ± 39	253 ± 38		
Data	697	455	246		

Signal:background ratios for *tb+tqb* are 1:10 to 1:50

Source of Uncertainty	Size
Top pairs normalization	18%
W+jets & multijets normalization	18–28%
Integrated luminosity	6%
Trigger modeling	3–6%
Lepton ID corrections	2–7%
Jet modeling	2–7%
Other small components	Few %
Jet energy scale	1–20%
Tag rate functions	2–16%

 Single top signal is smaller than total background uncertainty

Counting events is not a sensitive enough method –

Multivariate discriminant to separate signal from background

Search Strategy

- Maximize the signal acceptance
- Separate signal from background using multivariate techniques
 - 12 independent sets of data for final analysis
 - ~50 variables in every channel
 - Calculate discriminants that separate signal from background
 - Boosted decision trees
 - Matrix elements
 - Bayesian neural networks
- control samples
- Use ensembles of pseudo-data to test validity of methods

Boosted Decision Trees

- Machine-learning technique, widely used in social sciences, some use in HEP
 - Start at first "node": For each variable, find splitting value (cut) with best separation between two children nodes (mostly signal in one, mostly background in the other)
 - Select variable and splitting value with best separation to produce two "branches". Repeat recursively on each node
 - Stop when improvement stops or when too few events are left
 - Decision tree output for each event = leaf purity closer to 1(0) for signal (background)

$$Purity = \frac{N_{Signal}}{N_{Signal} + N_{Background}}$$

Improve performance of DT by using boosting, which averages over many trees

Decision Tree Analysis

- Trained 12 sets of trees: $(tb+tqb) \times (e,\mu) \times (2,3,4 \text{ jets}) \times (1,2 b-tags)$
- Search for tb+tqb has best sensitivity to see a signal
- 49 input variables Same list of variables used for all analysis channels

Statistical Analysis

Cross Section Measurement

- Binned likelihood from discriminant distribution
- Compute posterior probability density of tb+tqb using Bayes' theorem:
 - Flat positive-defined prior for the cross section
 - Systematic uncertainties are treated as Gaussian nuisance parameters
- 12 distributions (e, mu, 1tag, 2tag, 2,3,4 jets) with 100 bins each go into this calculation

Significance

"excess in data over background"

P-value: assuming a null hypothesis, what the probability to get a count equal to or greater than the count observed

We use "background only" ensembles to calculate p-value

đ

Pseudo-datasets / 0.4

Decision Tree Verification

- Use many ensembles with different input signal cross sections but assuming a SM cross section ration of σs/σt = 0.44
- Measure signal cross section using decision tree outputs
- Compare measured cross sections to input ones

Decision Tree Results

Expected:

 $\sigma(tb+tqb) = 2.7^{+1.6}_{-1.4} \text{ pb}$ p-value = 1.9 % Significance = 2.1 σ

Measured:

 σ (*tb*+*tqb*) = 4.9 ± 1.4 pb p-value = 0.035 % significance = 3.4 σ

Measuring |Vtb/

Most general *tbW* vertex:

$$\Gamma^{\mu}_{Wtb} = -\frac{g}{\sqrt{2}} V_{tb} \left\{ \gamma^{\mu} \left[f_{1}^{L} P_{L} + f_{1}^{R} P_{R} \right] - \frac{i\sigma^{\mu\nu}}{M_{W}} \left(p_{t} - p_{b} \right)_{\nu} \left[f_{2}^{L} P_{L} + f_{2}^{R} P_{R} \right] \right\}$$

Within the SM:

- 3-generation and unitary CKM matrix
- CP conserving pure V–A interaction:

Measure V_{tb} assuming:

$$\begin{pmatrix} d' \\ s' \\ b' \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix}$$

- No constraint on number of generation and unitarity of CKM matrix
- CP conserving pure V-A interaction, but not necessarily of SM strength

Summary:

First Evidence for Single Top Production

We calculate a cross section for single top production

$$\sigma (p\bar{p} \to tb + tqb + X) = 4.9^{+1.4}_{-1.4} \text{ pb}$$

3.4 σ significance

```
First direct measurement of |Vtb|
```

 $0.68 < |V_{tb}| \le 1$ at 95% C.L.

Outlook:

Event Yield 10² tb+tab Background 10 0.6 0.7 0.8 0.9 tb+tqb Decision Tree Output

DØ Run II preliminary

0.9 fb⁻¹ Data •

- We have already collected more than twice the data used for this analysis Hopefully, evidence will turn into observation soon!

- With Tevatron breaking its own Luminosity records every week, and with all the experience gained in search for single top, we are already closing in on many things, including Higgs – so,

stay tuned for more exciting news from the Tevatron!!!

DT Event Characteristics

DT Discriminant < 0.3

DT Discriminant > 0.65

