Measurement of Single Top Quark Production at D0 Using Matrix Elements

Jovan Mitrevski

Columbia University

(representing the D0 collaboration)

May 7, 2007

Electroweak Top Quark Production

DØ Results with 0.9 fb⁻¹

V. M. Abazov *et al.*, Phys. Rev. Lett. **98**, 181802 (2007).

Methodology	s+t-channel	observed p-value
BNN (orig.)	$\sigma = 5.0 \pm 1.9 \text{ pb}$	0.89% (2.4 σ)
ME (orig.)	$\sigma = 4.6^{+1.8}$ -1.5 pb	0.21% (2.9 σ)
DT	$\sigma = 4.9 \pm 1.4 \text{ pb}$	0.04% (3.4 σ)

Combination using BLUE Method:

$$\sigma \left(p\bar{p} \to tb + tqb + X \right)$$

= 4.8 ± 1.3 pb

Jovan Mitrevski

The Main Idea of the Matrix Element Method

- Assume a particular process (e.g. t-channel single top, *W*+jets).
 - The probability density to observe a particular configuration of jets and leptons (x) given that process:

$$P(x|\text{process}_i) = \frac{1}{\sigma_i} \frac{d\sigma_i}{dx}$$

• Can use Bayes's Theorem to invert the relation:

$$P(\text{signal}|x) = \frac{P(x|\text{signal})P(\text{signal})}{P(x|\text{signal})P(\text{signal}) + P(x|\text{background})P(\text{background})}$$

• We use the related discriminant:

$$D(x) = \frac{P(x|\text{signal})}{P(x|\text{signal}) + P(x|\text{background})}$$

The Differential Cross Section

$$\frac{d\sigma}{dx} = \sum_{j} \int dy \left[f_{1,j}(q_1, Q^2) f_{2,j}(q_2, Q^2) \frac{d\sigma_{hs,j}}{dy} W_j(x, y) \Theta_{\text{parton}}(y) \right]$$

- The event configuration **x** is the reconstruction-level event configuration, but the MEs are defined at the parton-level.
- Need to integrate / sum over the parton-level values (y, j) to relate them to the reconstruction-level values (x). The parts are:
 - The parton-level cross section, containing the MadGraph ME: *dσ/dy*.
 - The transfer function to relate the parton-level information of the final state particles to the reconstructed objects: *W*
 - The PDFs to relate the incoming protons to the initial state partons: **f**_{1,j}, **f**_{2,j}
 - Parton-level cuts, if necessary: Θ

The Matrix Element Discriminants

<u>The Matrix Elements</u>					
	Two Jets		Three Jets		
Name	Process	Name	Process		
tb	$u\bar{d} \to t\bar{b} \ (1)$	tbg	$u\bar{d} \to t\bar{b}g$ (5)		
tq	$ub \to td \ (1)$	tqg	$ub \to tdg \ (5)$		
	$\bar{d}b \to t\bar{u} \ (1)$		$\bar{d}b \to t\bar{u}g$ (5)		
		tqb	$ug \to t d \bar{b} \ (4)$		
			$\bar{d}g \to t \bar{u} \bar{b}$ (4)		
Wbb	$u\bar{d} \to W b\bar{b} \ (2)$	Wbbg	$u\bar{d} \to W b\bar{b}g$ (12)		
Wcg	$\bar{s}g \to W\bar{c}g$ (8)	Wcgg	$\bar{s}g \to W\bar{c}gg~(54)$		
Wgg	$u\bar{d} \rightarrow Wgg$ (8)	Wggg	$u\bar{d} \to Wggg~(54)$		
		lepjets	$q\bar{q} \to t\bar{t} \to \ell^+ \nu b\bar{u}d\bar{b}$ (3)		
			$gg \to t\bar{t} \to \ell^+ \nu b\bar{u}d\bar{b} \ (3)$		

- Also use charge conjugate processes
- Use the same MEs for muon channel, and for different input pairs ($u\overline{d}$, $c\overline{s}$, etc.)
- The main change from the PRL version: extra MEs for 3-jet events (shaded).

A Closer Look at the Lepjets Matrix Element

- In the 3-jet bin, $t\bar{t} \rightarrow \ell$ +jets is 22% of the background for single-tag e+jets, and 17% for single-tag µ+jets.
- $t\bar{t} \rightarrow \ell$ +jets decays into $\ell v b$ quark from one top quark, qq'b from the other
 - 1:1 quark-jet matching: 4-jet bin. For the 3-jet bin, we need to lose a jet.
- looking at our *tt* → *e*+jets MC sample, jets are lost without merging 80% of the time, and light quark jets are lost without merging at 1.7 × the rate of the *b*-jets.
- As a simplification:
 - ➡ assume light quark is lost.
 - In usual case, use transfer function to predict probability to have jet energy below 15 GeV.

Permutation Weights: B-Tagging and Muon Charge

• We use *b*-tagging to weigh the different jet-parton assignments differently:

$$W_{btag}(\text{perm}) = \prod_{\text{jets } i} w_{btag}(tag_i | \text{flavor}_i, p_{T_i}, \eta_i)$$

• For example, for the t-channel process, $bu \rightarrow e^+vbd$, in the single-tag two-jet bin:

$$W_{btag}(a) = w_{btag}(tagged|\boldsymbol{b}, p_{T\boldsymbol{b}}, \eta_{\boldsymbol{b}}) w_{btag}(untagged|\boldsymbol{d}, p_{T\boldsymbol{d}}, \eta_{\boldsymbol{d}})$$

 $W_{btag}(b) = w_{btag}(tagged|\boldsymbol{d}, p_{T_{\boldsymbol{d}}}, \eta_{\boldsymbol{d}}) w_{btag}(untagged|\boldsymbol{b}, p_{T_{\boldsymbol{b}}}, \eta_{\boldsymbol{b}})$

- If a *b*-quark decays muonically we can use the muon charge:
 - direct: $\mathbf{b} \rightarrow \mu^- \overline{v}c$ $\overline{\mathbf{b}} \rightarrow \mu^+ v\overline{c}$ • but also: $\mathbf{b} \rightarrow \overline{x}c \rightarrow x\overline{x}\mu^+ \overline{v}s$ $\overline{\mathbf{b}} \rightarrow x\overline{x}\overline{c} \rightarrow x\overline{x}\mu^- v\overline{s}$
- Use p_{Trel} , or the p_T of the muon relative to the jet. Muons from *c*-quarks tend to have a lower p_{Trel} .

The Selection: Unchanged from PRL

- The same 0.9 fb⁻¹ data set as for the PRL.
 - Good data quality
 - Good primary vertex
 - lepton+jets triggered data
 - Leptons: "tight" electron with $p_T > 15$ GeV, $|\eta| < 1.1$, or "tight" muon with $p_T > 18$ GeV, $|\eta| < 2.0$.
 - Veto on second charged lepton
 - Jets: leading $p_T > 25$ GeV, second jet $p_T > 20$ GeV, others $p_T > 15$ GeV. leading $|\eta| < 2.5$, $|\eta| < 3.4$ for subsequent jets.
 - 15 GeV < E_T < 200 GeV
 - "Triangle" cuts: don't take events that have the missing E_T aligned or antialigned with the lepton or the leading jet

The Analysis Channels

s-channel

t-channel

Percentage of t-channel tqb selected events

and S:B ratio (white squares = no plans to analyze)

Electron + Muon	1 jet	2 jets	3 jets	4 jets	≥ 5 jets
0 tags	10% 1 : 4,400	27% 1 : 520	13% 1 : 400	<mark>4%</mark> 1 : 360	1% □ 1 : 300
1 tag	<mark>6%</mark> 1 : 150	20% 1 : 32	11% 1 : 37	<mark>4%</mark> 1 : 58	1% □ 1 : 72
2 tags		1% □ 1 : 100	2% 1:36	1% ■ 1 : 65	0% □ 1 : 70

Systematics and Extracting a Result

- Build a 2-dimensional histogram: s-disc × t-disc
- Integrate over shifts to yields, acceptances, and luminosity (Gaussian priors) to simulate systematics
 - Table on the right shows example uncertainties. (We are still statistics dominated.)
- Extract a measurement using a Bayesian approach.

	Single-	Tagged	Two-	Jets	Electr	on Cl	nannel	Percentage Errors
	tb	tqb	$t\bar{t}lj$	$t\bar{t}ll$	Wbb	Wcc	W j j	Mis-ID e
Components for Normalization								
Luminosity	(6.1)	(6.1)	6.1	6.1				
Cross section	(16.0)	(15.0)	18.0	18.0				
Branching fraction	(1.0)	(1.0)	1.0	1.0				
Matrix method					18.2	18.2	18.2	18.2
Primary vertex	2.4	2.4	2.4	2.4				
Electron ID	5.5	5.5	5.5	5.5				
Jet ID	1.5	1.5	1.5	1.5				
Jet fragmentation	5.0	5.0	7.0	5.0				
Trigger	3.0	3.0	3.0	3.0				
Components for Normaliz	ation ar	nd Shape	e					
Jet energy scale	1.4	0.3	9.9	1.7				
Flavor-dependent TRFs	2.1	5.9	4.6	2.4	4.4	6.3	7.4	
Statistics	0.7	0.7	1.3	0.8	0.9	0.9	0.4	5.6
Combined								
Acceptance uncertainty	10.8	12.1						
Yield uncertainty	19.3	19.3	24.1	21.1	18.8	19.3	19.7	19.1

Expected Results

- We get back the Standard Model value of the cross section when we set the "data" to the background + SM signal yield.
- Expected significance: 1.9σ. There is a 3.1% chance for background only to result in a measurement of 2.9 pb or higher.

Cross Check Plots

Single top scaled to measured cross section.

0.95

0.95

- 1

Discriminant Results (2 Jets)

Single top scaled to measured cross section.

Discriminant Results (3 Jets)

Jovan Mitrevski

Assuming a SM cross section ratio of $\sigma_s/\sigma_t = 0.44$

Result

Significance

- Significance: 3.2σ. There is only a 0.08% chance for zero signal to fluctuate up to what we measure or higher.
- There is a 13% chance for a 2.9 pb signal to result in our measurement or higher.

Distributions (t-channel discriminant cut)

Conclusion

 Made a post-PRL iteration of the ME analysis, with a number of improvements, the main one being the addition of a *tt* → lepjets matrix element for the 3-jet bin. The measured cross section is:

$$\sigma (p\bar{p} \to tb + tqb + X) = 4.8^{+1.6}_{-1.4} \text{ pb}$$

- p-value: 0.08%: 3.2σ Gaussian equivalent significance.
- An updated combination including the DT, new BNN, and new ME, using the BLUE method, is coming.

Backups

Why is Electroweak Production Interesting?

• Electroweak production is directly proportional to $|V_{tb}|^2$

$$\begin{pmatrix} d' \\ s' \\ b' \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix}$$

➡ Assuming unitarity:

 $|V_{tb}| = 0.999100^{+0.000034}_{-0.000004}.$

W.-M. Yao et al, J. Phys. G 33, 1 (2006)

a

W

➡ Without that assumption, it can be significantly smaller:

J. Alwall *et al*, arXiv:hep-ph/0607115

- Single top production tests that assumption
- Good place to study the V–A charged current interaction
 - Because the top quark decays before it has time to hadronize, it preserves its polarization

h

Why is Electroweak Production Interesting?

- Sensitive to new physics.
- s-channel and t-channel have different sensitivities.
 - The s-channel is more sensitive to charged resonances, like top pions or charged Higgs particles.
 - The t-channel is more sensitive to FCNC and other new interactions.

NLO cross sections (+ higher order soft gluon correction) at $m_t = 170$ GeV, Phys. Rev. D 74 114014 (2006)

Electroweak Top Quark Production

s-channel

 \bar{q}' , W^+ , \bar{b} $\sigma_{tb} = 1.12 \pm 0.07 \,\mathrm{pb}$

t-channel

 $\sigma_{tqb} = 2.34 \pm 0.12 \,\mathrm{pb}$

DØ Results with 0.9 fb⁻¹

Methodology	s+t-channel	observed p-value			
BNN (orig)	$\sigma = 5.0 \pm 1.9 \text{ pb}$	0.89% (2.4 σ)			
ME (orig)	$\sigma = 4.6^{+1.8}$ -1.5 pb	0.21% (2.9 σ)			
DT	0.04% (3.4 σ)				

V. M. Abazov et al., Phys. Rev. Lett. 98, 181802 (2007).

tW associated production

CDF Results with 955 pb⁻¹

Methodology	s+t-channel	extra info
Neural Network	σ < 2.6 pb @ 95% CL	$\sigma_{t} = 0.2^{+1.1} \text{-}_{0.2} \text{ pb} \\ \sigma_{s} = 0.7^{+1.5} \text{-}_{0.7} \text{ pb}$
Likelihood	σ < 2.7 pb @ 95% CL	best fit t-channel = 0.2 pb best fit s-channel = 0.1 pb
Matrix Element	σ = 2.7 ^{+1.5} -1.3 pb	p-value: 1.0% (2.3 σ)

Compatibility of NN (both 1D and 2D), LF and ME data results is 0.65%

Single Top Parton Distributions

Data/MC Comparisons Before *b*-Tagging (2 jet bin, electron channel)

Data/MC Comparisons After *b*-Tagging (2 jet bin, electron channel, one tag)

Event Yields

	Yields with One <i>b</i> -Tagged Jet									
		Ele	ctron C	hannel		Muon Channel				
	1 jet	2 jets	3 jets	4 jets	5+ jets	1 jet	2 jets	3 jets	4 jets	5 jets
Signals										
tb	2	7	3	1	0	1	5	2	1	0
tqb	3	11	6	2	1	2	9	5	2	0
tb+tqb	5	18	9	3	1	3	14	7	2	1
Backgrounds										
$t\bar{t} \rightarrow ll$	4	16	13	5	2	2	13	10	4	1
$t\bar{t} \rightarrow l + jets$	1	11	47	58	30	0	6	32	45	20
$W b \overline{b}$	188	120	50	14	2	131	110	56	16	4
$Wc\bar{c}$	81	74	36	9	1	64	74	46	13	2
W j j	175	61	20	5	1	125	58	23	6	2
Multijets	36	66	48	18	7	17	26	24	8	2
Background Sum	484	348	213	110	43	340	286	191	93	30
Data	445	357	207	97	35	289	287	179	100	38

• Try to discriminate against $t\bar{t} \rightarrow \ell$ +jets in the three-jet bin.

ME Weights

$$D(x) = \frac{P(x|\text{signal})}{P(x|\text{signal}) + P(x|\text{background})}$$

 One issue has always been how do we combine the various MEs to determine P(x | background) and P(x | signal).

 $P(x|B) = \sum_{i} w_i P(x|B_i)$

- In the old analysis, the weights, w_i, are optimized by grid search.
- To be more physics-motivated, we decided to choose weights based on the relative yields. Not so easy in practice because we don't have all the matrix elements.

• For P(x | t-channel) in the 3-jet bin:

•
$$w_{tqb} = 0.6$$
, $w_{tqg} = 0.4$ in 1-tag

•
$$w_{tqb} = 1.0$$
, $w_{tqg} = 0.0$ in 2-tag

Background Fractions

	1 ta	ĝ	2 ta	gs
	Electron	Muon	Electron	Muon
w_{wbb}	0.55	0.60	0.83	0.87
w_{wcg}	0.15	0.15	0.04	0.04
w_{wgg}	0.35	0.30	0.13	0.09
w_{wbbg}	0.35	0.45	0.30	0.40
w_{wcgg}	0.10	0.10	0.02	0.03
w_{wggg}	0.30	0.25	0.13	0.10
$w_{\rm lepjets}$	0.25	0.20	0.55	0.47

TABLE 3: Background fractions chosen for each analysis channel in two-jet and three-jet events.

Transfer Functions

PHENO 07 - May 7, 2007

Jovan Mitrevski

Discriminant Performance (Electron, One Tag)

Cross Check Plots

Calibration

The Algorithm to Lose a Jet

- Assume, for simplicity, that we lose only light quark jets.
- The algorithm requires figuring out which quark to lose and assigning a weight reflecting the probability to lose that jet. It proceeds as follows:
 - If the two light quarks are within $\Delta R < 0.6$, it is assumed that they merge. No merging with *b*-jets is supported. The weight returned is 1.
 - Randomly choose which light parton to lose.
 - If the lost parton has $|\eta| > 3.4$, it is assumed that the associated jet is not found with probability 1.
 - Otherwise, (and this should be the main method) the returned weight is:

$$w(E_{\mathrm{T,parton}}) = \max\left\{\int_{0}^{15} dE_{\mathrm{T,reco}}W_{jet}(E_{\mathrm{T,reco}}|E_{\mathrm{T,parton}}), 0.05\right\}$$

Distributions (s-channel discriminant cut)

Combining using the BLUE method

• BLUE method:

$$\sigma_{\rm comb} = \sum_j w_j \sigma_j$$

• Minimize variance by choosing:

$$w_i = \frac{\sum_j \operatorname{Cov}^{-1}(\sigma_i, \sigma_j)}{\sum_k \sum_l \operatorname{Cov}^{-1}(\sigma_k, \sigma_l)}$$

$$\Delta \sigma_{\rm comb} = \sqrt{\sum_{i} \sum_{j} w_i w_j \rho_{ij} \Delta \sigma_i \Delta \sigma_j}$$

• Correlation matrix:

$$\rho_{ij} \equiv \frac{\operatorname{Cov}(i,j)}{\sqrt{\operatorname{Var}(i)\operatorname{Var}(j)}}$$

$$\rho = \begin{pmatrix} \sqrt{7} & \sqrt{12} & \sqrt{7} \\ 1 & 0.57 & 0.51 & DT \\ 0.57 & 1 & 0.45 & ME \\ 0.51 & 0.45 & 1 & BNN \end{pmatrix}$$

Combining using the BLUE method (cont.)

• From SM Ensembles:

Analysis	Mean	RMS	$\sigma/\Delta\sigma$
	$\sigma \; [\mathrm{pb}]$	$\Delta \sigma \; [\mathrm{pb}]$	
Decision trees (DT)	2.9	1.6	1.8
Matrix elements (ME)	3.3	1.6	2.1
Bayesian neural networks (BNN)	3.0	2.1	1.4
Combined	3.1	1.4	2.2

• The following weights are chosen:

 $w_{DT} = 0.401$, $w_{ME} = 0.452$, $w_{BNN} = 0.146$

• Expected Significance:

Analysis	Expected <i>p</i> -value	Expected significance	
		[std. dev.]	
Decision trees (DT)	0.0177	2.1	
Matrix elements (ME)	0.0358	1.8	
Bayesian neural networks (BNN)	0.0992	1.3	
Combined	0.0137	2.2	

Combination Results

$$\sigma \left(p\bar{p} \to tb + tqb + X \right) = 4.8 \pm 1.3 \,\mathrm{pb}$$

Analysis	Measured cross section	<i>p</i> -value	Significance
	[pb]		[std. dev.]
Decision trees (DT)	4.9	0.00040	3.4
Matrix elements (ME)	4.6	0.00201	2.9
Bayesian neural networks (BNN)	5.0	0.01157	2.3
Combined	4.8	0.00027	3.5

PHENO 07 - May 7, 2007

Jovan Mitrevski