Measurement of Single Top Quark Production at DO Using Matrix Elements

Jovan Mitrevski
Columbia University
(representing the D0 collaboration)

May 7, 2007

Electroweak Top Quark Production

DØ Results with $0.9 \mathrm{fb}^{-1}$

Methodology	s+t-channel	observed p-value
BNN (orig.)	$\sigma=5.0 \pm 1.9 \mathrm{pb}$	$0.89 \%(2.4 \sigma)$
ME (orig.)	$\sigma=4.6^{+1.8}-1.5 \mathrm{pb}$	$0.21 \%(2.9 \sigma)$
DT	$\sigma=4.9 \pm 1.4 \mathrm{pb}$	$0.04 \%(3.4 \sigma)$

Combination using BLUE Method:

$$
\begin{array}{r}
\sigma(p \bar{p} \rightarrow t b+t q b+X) \\
=4.8 \pm 1.3 \mathrm{pb}
\end{array}
$$

3.5σ significance

The Main Idea of the Matrix Element Method

- Assume a particular process (e.g. t-channel single top, W+jets).
\Rightarrow The probability density to observe a particular configuration of jets and leptons (x) given that process:

$$
P\left(x \mid \operatorname{process}_{i}\right)=\frac{1}{\sigma_{i}} \frac{d \sigma_{i}}{d x}
$$

- Can use Bayes's Theorem to invert the relation:

$$
P(\text { signal } \mid x)=\frac{P(x \mid \text { signal }) P(\text { signal })}{P(x \mid \text { signal }) P(\text { signal })+P(x \mid \text { background }) P(\text { background })}
$$

- We use the related discriminant:

$$
D(x)=\frac{P(x \mid \text { signal })}{P(x \mid \text { signal })+P(x \mid \text { background })}
$$

The Differential Cross Section

$$
\frac{d \sigma}{d x}=\sum_{j} \int d y\left[f_{1, j}\left(q_{1}, Q^{2}\right) f_{2, j}\left(q_{2}, Q^{2}\right) \frac{d \sigma_{h s, j}}{d y} W_{j}(x, y) \Theta_{\text {parton }}(y)\right]
$$

- The event configuration x is the reconstruction-level event configuration, but the MEs are defined at the parton-level.
- Need to integrate / sum over the parton-level values (y, j) to relate them to the reconstruction-level values (\mathbf{x}). The parts are:
- The parton-level cross section, containing the MadGraph ME: $d \sigma / d y$.
- The transfer function to relate the parton-level information of the final state particles to the reconstructed objects: W
- The PDFs to relate the incoming protons to the initial state partons: $\boldsymbol{f}_{1, j,}, \boldsymbol{f}_{2, j}$
- Parton-level cuts, if necessary: $\boldsymbol{\Theta}$

The Matrix Element Discriminants

The Matrix Elements			
Two Jets		Three Jets	
Name	Process	Name	Process
$t b$	$u \bar{d} \rightarrow t \bar{b}(1)$	$t b g$	$u \bar{d} \rightarrow t \bar{b} g(5)$
$t q$	$\begin{aligned} u b & \rightarrow t d \\ \bar{d} b & \rightarrow t \bar{u}(1) \end{aligned}$	$t q g$	$\begin{aligned} u b & \rightarrow t d g \\ \bar{d} b & \rightarrow t \bar{u} g \end{aligned}$
		$t q b$	$\begin{aligned} & u g \rightarrow t d \bar{b} \\ & \bar{d} g \rightarrow t \bar{u} \bar{b} \end{aligned}$
$W b b$	$u \bar{d} \rightarrow W b \bar{b}(2)$	Wbbg	$u \bar{d} \rightarrow W b \bar{b} g(12)$
$W c g$	$\bar{s} g \rightarrow W \bar{c} g$ (8)	Wcgg	$\bar{s} g \rightarrow W \bar{c} g g(54)$
$W g g$	$u \bar{d} \rightarrow W g g(8)$	Wggg	$u \bar{d} \rightarrow W \mathrm{dgg}$ (54)
		lepjets	$q \bar{q} \rightarrow t \bar{t} \rightarrow \ell^{+} \nu b \bar{u} d \bar{b}(3)$
			$g g \rightarrow t \bar{t} \rightarrow \ell^{+} \nu b \bar{u} d \bar{b}(3)$

- Also use charge conjugate processes
- Use the same MEs for muon channel, and for different input pairs (ū, css, etc.)
- The main change from the PRL version: extra MEs for 3-jet events (shaded).

A Closer Look at the Lepjets Matrix Element

- In the 3 -jet bin, $t \boldsymbol{t} \boldsymbol{\rightarrow} \boldsymbol{\ell}+$ jets is 22% of the background for single-tag e+jets, and 17% for single-tag $\mu+j e t s$.
- $t \mp \rightarrow \ell+j e t s$ decays into $\ell v b$ quark from one top quark, $q q$ 'b from the other
$\Rightarrow 1: 1$ quark-jet matching: 4-jet bin. For the 3-jet bin, we need to lose a jet.

- looking at our $t \mp \rightarrow e+j e t s$ MC sample, jets are lost without merging 80% of the time, and light quark jets are lost without merging at $1.7 \times$ the rate of the b-jets.
- As a simplification:
\Rightarrow assume light quark is lost.
\Rightarrow In usual case, use transfer function to predict probability to have jet energy below 15 GeV .

Permutation Weights: B-Tagging and Muon Charge

- We use b-tagging to weigh the different jet-parton assignments differently:

$$
W_{b \operatorname{tag}}(\text { perm })=\prod_{\text {jets } i} w_{b \operatorname{tag}}\left(\operatorname{tag}_{i} \mid \operatorname{flavor}_{i}, p_{\mathrm{T}}, \eta_{i}\right)
$$

- For example, for the t-channel process, bu $\rightarrow e^{+} v b d$, in the single-tag two-jet bin:

$$
\begin{aligned}
& W_{b \operatorname{tag}}(a)=w_{b \text { tag }}\left(\operatorname{tagged} \mid b, p_{\mathrm{T} b}, \eta_{b}\right) w_{b \operatorname{tag}}\left(\operatorname{untagged} \mid d, p_{\mathrm{T}_{d}}, \eta_{d}\right) \\
& W_{b \operatorname{tag}}(b)=w_{b \text { tag }}\left(\operatorname{tagged} \mid d, p_{\mathrm{T}_{d}}, \eta_{d}\right) w_{b \text { tag }}\left(\operatorname{untagged} \mid b, p_{\mathrm{T} b}, \eta_{b}\right)
\end{aligned}
$$

- If a b-quark decays muonically we can use the muon charge:
- direct:

$$
\boldsymbol{b} \rightarrow \mu^{-} \bar{v} c
$$

$$
\overline{\boldsymbol{b}} \rightarrow \mu^{+} v \bar{c}
$$

- but also:

$$
\boldsymbol{b} \rightarrow \bar{x} c \rightarrow x \bar{x} \mu^{+} \bar{v} s \quad \overline{\boldsymbol{b}} \rightarrow x \bar{x} \bar{c} \rightarrow x \bar{x} \boldsymbol{\mu}^{-} v \bar{s}
$$

- Use pTrel, or the pt of the muon relative to the jet. Muons from c-quarks tend to have a lower ptrel.

The Selection: Unchanged from PRL

- The same $0.9 \mathrm{fb}^{-1}$ data set as for the PRL.
- Good data quality
- Good primary vertex
- lepton+jets triggered data
- Leptons: "tight" electron with $p_{T}>15 \mathrm{GeV},|\eta|<1.1$, or "tight" muon with pt > $18 \mathrm{GeV},|n|<2.0$.
- Veto on second charged lepton
- Jets: leading $\mathrm{p}_{\mathrm{T}}>25 \mathrm{GeV}$, second jet $\mathrm{p}_{\mathrm{T}}>20 \mathrm{GeV}$, others $\mathrm{p}_{\mathrm{t}}>15 \mathrm{GeV}$. leading $|\eta|<2.5,|n|<3.4$ for subsequent jets.
- 15 GeV < $\mathrm{E}_{\mathrm{T}}<200 \mathrm{GeV}$
- "Triangle" cuts: don't take events that have the missing Eт aligned or antialigned with the lepton or the leading jet

The Analysis Channels

s-channel

Percentage of s-channel tb selected events and $\mathrm{S}: \mathrm{B}$ ratio
 (white squares = no plans to analyze)

Electron + Muon	1 jet	2 jets	3 jets	4 jets	≥ 5 jets
0 tags	$\begin{gathered} 8 \% \\ 1: 11,000 \end{gathered}$	$\begin{gathered} 19 \% \\ 1: 1,600 \end{gathered}$	$\begin{gathered} 9 \% \\ 1: 1,200 \end{gathered}$	$\begin{gathered} 3 \% \\ \square \\ 1: 1,100 \end{gathered}$	$\begin{gathered} \stackrel{1 \%}{\square} \\ 1: 1,000 \end{gathered}$
1 tag	6% $1: 270$	$\begin{gathered} 24 \% \\ \hline 1: 55 \end{gathered}$	$\begin{aligned} & 12 \% \\ & 1: 73 \end{aligned}$	$\begin{gathered} 3 \% \\ \square \\ 1: 130 \end{gathered}$	$\begin{gathered} 1 \% \\ \square \\ 1: 200 \end{gathered}$
2 tags		9% 1: 12	$\begin{aligned} & 4 \% \\ & 1: 27 \end{aligned}$	$\begin{gathered} 1 \% \\ \square \\ 1: 92 \end{gathered}$	$\begin{gathered} 0 \% \\ \square \\ 1: 110 \end{gathered}$

Percentage of t-channel tqb selected events and $\mathrm{S}: \mathrm{B}$ ratio (white squares $=$ no plans to analyze)

Electron + Muon	1 jet	2 jets	3 jets	4 jets	≥ 5 jets
0 tags	$\begin{gathered} 10 \% \\ 1: 4,400 \end{gathered}$			40 1 : 360	$\begin{gathered} 1 \% \\ \square \\ 1: 300 \end{gathered}$
1 tag	$\begin{gathered} 6 \% \\ 1: 150 \end{gathered}$	$\begin{array}{r} 20 \% \\ \hline 1: 32 \end{array}$	$\begin{aligned} & 11 \% \\ & 1: 37 \end{aligned}$	$\begin{aligned} & 406 \\ & 1: 58 \end{aligned}$	$\begin{gathered} 1 \% \\ \stackrel{1 \%}{\square} \\ 1: 72 \end{gathered}$
2 tags		$\begin{gathered} 1 \% \\ \square \\ 1: 100 \end{gathered}$	2\% $1: 36$	$\begin{aligned} & \stackrel{1 \%}{\square} \\ & 1: 65 \end{aligned}$	0% $1: 70$

Systematics and Extracting a Result

- Build a 2-dimensional histogram: s-disc \times t-disc
- Integrate over shifts to yields, acceptances, and luminosity (Gaussian priors) to simulate systematics
\Rightarrow Table on the right shows example uncertainties. (We are still statistics dominated.)
- Extract a measurement using a Bayesian approach.

	Single-Tagged Two-Jets Electron Channel Percentage Errors							
	$t b$	$t q b$	$t \bar{t} l j$	$t \bar{t} l l$	$W b b$	$W c c$	$W j j$	Mis-ID e
Components for Normalization								
Luminosity	(6.1)	(6.1)	6.1	6.1	-	-	-	-
Cross section	(16.0)	$(15.0$	18.0	18.0	-	-	-	-
Branching fraction	(1.0)	(1.0)	1.0	1.0	-	-	-	-
Matrix method	-	-	-	-	18.2	18.2	18.2	18.2
Primary vertex	2.4	2.4	2.4	2.4	-	-	-	-
Electron ID	5.5	5.5	5.5	5.5	-	-	-	-
Jet ID	1.5	1.5	1.5	1.5	-	-	-	-
Jet fragmentation	5.0	5.0	7.0	5.0	-	-	-	-
Trigger	3.0	3.0	3.0	3.0	-	-	-	-
Components for Normalization and	Shape							
Jet energy scale	1.4	0.3	9.9	1.7	-	-	-	-
Flavor-dependent TRFs	2.1	5.9	4.6	2.4	4.4	6.3	7.4	-
Statistics	0.7	0.7	1.3	0.8	0.9	0.9	0.4	5.6
Combined								
Acceptance uncertainty	10.8	12.1	-	-	-	-	-	-
Yield uncertainty	19.3	19.3	24.1	21.1	18.8	19.3	19.7	19.1

Expected Results

- We get back the Standard Model value of the cross section when we set the "data" to the background + SM signal yield.
- Expected significance: 1.9σ. There is a 3.1% chance for background only to result in a measurement of 2.9 pb or higher.

Cross Check Plots

Discriminant Results (2 Jets)

Single top scaled to measured cross section.

PHENO 07 - May 7, 2007

t disc

Jovan Mitrevski

Discriminant Results (3 Jets)

Single top scaled to measured cross section.

PHENO 07 - May 7, 2007

t disc

Jovan Mitrevski

Result

$$
\sigma(p \bar{p} \rightarrow t b+t q b+X)=4.8_{-1.4}^{+1.6} \mathrm{pb}
$$

Significance

- Significance: 3.2σ. There is only a 0.08% chance for zero signal to fluctuate up to what we measure or higher.
- There is a 13% chance for a 2.9 pb signal to result in our measurement or higher.

Distributions (t-channel discriminant cut)

$D_{t}<0.4$

$D_{t}>0.7$

Conclusion

- Made a post-PRL iteration of the ME analysis, with a number of improvements, the main one being the addition of a $t \mp \rightarrow$ lepjets matrix element for the 3 -jet bin. The measured cross section is:

$$
\sigma(p \bar{p} \rightarrow t b+t q b+X)=4.8_{-1.4}^{+1.6} \mathrm{pb}
$$

- p-value: 0.08\%: 3.2б Gaussian equivalent significance.
- An updated combination including the DT, new BNN, and new ME, using the BLUE method, is coming.

Backups

Why is Electroweak Production Interesting?

- Electroweak production is directly proportional to $\left|\mathrm{V}_{\mathrm{tb}}\right|^{2}$

$$
\left(\begin{array}{c}
d^{\prime} \\
s^{\prime} \\
b^{\prime}
\end{array}\right)=\left(\begin{array}{ccc}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right)\left(\begin{array}{c}
d \\
s \\
b
\end{array}\right)
$$

\Rightarrow Assuming unitarity:

$$
\left|V_{t b}\right|=0.999100_{-0.000004}^{+0.000034}
$$

$$
\text { W.-M. Yao et al, J. Phys. G 33, } 1 \text { (2006) }
$$

\Rightarrow Without that assumption, it can be significantly smaller:
J. Alwall et al, arXiv:hep-ph/0607115
\Rightarrow Single top production tests that assumption

- Good place to study the V-A charged current interaction
\Rightarrow Because the top quark decays before it has time to hadronize, it preserves its polarization

Why is Electroweak Production Interesting?

- Sensitive to new physics.
- s-channel and t-channel have different sensitivities.
- The s-channel is more sensitive to charged resonances, like top pions or charged Higgs particles.
- The t-channel is more sensitive to FCNC and other new interactions.

Electroweak Top Quark Production

s-channel

t-channel

$$
\sigma_{t q b}=2.34 \pm 0.12 \mathrm{pb}
$$

DØ Results with $0.9 \mathrm{fb}^{-1}$

Methodology	s+t-channel	observed p-value
BNN (orig)	$\sigma=5.0 \pm 1.9 \mathrm{pb}$	$0.89 \%(2.4 \sigma)$
ME (orig)	$\sigma=4.6^{+1.8}-1.5 \mathrm{pb}$	$0.21 \%(2.9 \sigma)$
DT	$\sigma=4.9 \pm 1.4 \mathrm{pb}$	$0.04 \%(3.4 \sigma)$

V. M. Abazov et al., Phys. Rev. Lett. 98, 181802 (2007).

tW associated production

$$
\sigma_{t W}=0.30 \pm 0.06 \mathrm{pb}
$$

CDF Results with $955 \mathrm{pb}^{-1}$

Methodology	s+t-channel	extra info
Neural Network	$\sigma<2.6 \mathrm{pb} @ 95 \% \mathrm{CL}$	$\sigma_{\mathrm{t}}=0.2^{+1.1}-0.2 \mathrm{pb}$ $\sigma_{\mathrm{s}}=0.7^{+1.5}-0.7 \mathrm{pb}$
Likelihood	$\sigma<2.7 \mathrm{pb} @ 95 \% \mathrm{CL}$	best fit t-channel $=0.2 \mathrm{pb}$ best fit s-channel $=0.1 \mathrm{pb}$
Matrix Element	$\sigma=2.7^{+1.5}-1.3 \mathrm{pb}$	p-value: $1.0 \%(2.3 \sigma)$

Compatibility of NN (both 1D and 2D), LF and ME data results is 0.65%

Single Top Parton Distributions

Data/MC Comparisons Before b-Tagging (2 jet bin, electron channel)

Data/MC Comparisons After b-Tagging
 (2 jet bin, electron channel, one tag)

26

Event Yields

	$\underline{\text { Yields with One } b \text {-Tagged Jet }}$									
	1 jet	Electron Channel			$5+$ jets	1 jet	Muon Channel			5 jets
		2 jets	3 jets	4 jets			2 jets	3 jets	4 jets	
Signals										
$t b$	2	7	3	1	0	1	5	2	1	0
$t q b$	3	11	6	2	1	2	9	5	2	0
$t b+t q b$	5	18	9	3	1	3	14	7	2	1
Backgrounds $t \bar{t} \rightarrow l l$	4	16	13	5	2	2	13	10	4	1
$t \bar{t} \rightarrow l+$ jets	1	11	47	58	30	0	6	32	45	20
$W b \bar{b}$	188	120	50	14	2	131	110	56	16	4
$W c \bar{c}$	81	74	36	9	1	64	74	46	13	2
$W j j$	175	61	20	5	1	125	58	23	6	2
Multijets	36	66	48	18	7	17	26	24	8	2
Background Sum	484	348	213	110	43	340	286	191	93	30
Data	445	357	207	97	35	289	287	179	100	38

- Try to discriminate against $t \mathbb{t} \rightarrow \ell+$ jets in the three-jet bin.

ME Weights

$$
D(x)=\frac{P(x \mid \text { signal })}{P(x \mid \text { signal })+P(x \mid \text { background })}
$$

- One issue has always been how do we combine the various MEs to determine $\mathrm{P}(\mathrm{x} \mid$ background) and $P(x \mid$ signal).

$$
P(x \mid B)=\sum_{i} w_{i} P\left(x \mid B_{i}\right)
$$

- In the old analysis, the weights, w_{i}, are optimized by grid search.
- To be more physics-motivated, we decided to choose weights based on the relative yields. Not so easy in practice because we don't have all the matrix elements.
- For $P(x \mid t-c h a n n e l)$ in the 3-jet bin:
- $\mathrm{w}_{\text {tqb }}=0.6, \mathrm{w}_{\text {tqg }}=0.4$ in 1-tag
- $w_{\text {tqb }}=1.0, w_{\text {tqg }}=0.0$ in 2-tag

	Background Fractions			
	1 tag		2 tags	
	Electron	Muon	Electron	Muon
$w_{w b b}$	0.55	0.60	0.83	0.87
$w_{w c g}$	0.15	0.15	0.04	0.04
$w_{w g g}$	0.35	0.30	0.13	0.09
$w_{w b b g}$	0.35	0.45	0.30	0.40
$w_{w c g g}$	0.10	0.10	0.02	0.03
$w_{\text {wggg }}$	0.30	0.25	0.13	0.10
$w_{\text {lepjets }}$	0.25	0.20	0.55	0.47

TABLE 3: Background fractions chosen for each analysis channel in two-jet and three-jet events.

Transfer Functions

Applying the jet transfer function on the bottom quark from the top decay (blue) vs. full GEANT simulation (yellow)

- We measure reconstructed values, but the Matrix Element uses parton values.
\Rightarrow Transfer Functions
- We assume:
- can use per-object transfer functions
- the angles are perfectly measured

The jet5 $\mathrm{p}_{\mathrm{T}} \quad$ DØ Run II Preliminary

Discriminant Performance (Electron, One Tag)

Cross Check Plots

Calibration

input $2.9 \mathrm{pb} \rightarrow$ measure 3.2 pb input $4.5 \mathrm{pb} \rightarrow$ measure 4.8 pb

The Algorithm to Lose a Jet

- Assume, for simplicity, that we lose only light quark jets.
- The algorithm requires figuring out which quark to lose and assigning a weight reflecting the probability to lose that jet. It proceeds as follows:
- If the two light quarks are within $\Delta R<0.6$, it is assumed that they merge. No merging with b-jets is supported. The weight returned is 1 .
- Randomly choose which light parton to lose.
- If the lost parton has $|\eta|>3.4$, it is assumed that the associated jet is not found with probability 1.
- Otherwise, (and this should be the main method) the returned weight is:

$$
w\left(E_{\mathrm{T}, \text { parton }}\right)=\max \left\{\int_{0}^{15} d E_{\mathrm{T}, \mathrm{reco}} W_{j e t}\left(E_{\mathrm{T}, \mathrm{reco}} \mid E_{\mathrm{T}, \mathrm{parton}}\right), 0.05\right\}
$$

Distributions (s-channel discriminant cut)

$$
D_{s}<0.4
$$

all events

$\mathrm{D}_{\mathrm{s}}>0.7$

Combining using the BLUE method

- BLUE method:

$$
\sigma_{\mathrm{comb}}=\sum_{j} w_{j} \sigma_{j}
$$

- Minimize variance by choosing:

$$
\Delta \sigma_{\mathrm{comb}}=\sqrt{\sum_{i} \sum_{j} w_{i} w_{j} \rho_{i j} \Delta \sigma_{i} \Delta \sigma_{j}}
$$

- Correlation matrix:

$$
w_{i}=\frac{\sum_{j} \operatorname{Cov}^{-1}\left(\sigma_{i}, \sigma_{j}\right)}{\sum_{k} \sum_{l} \operatorname{Cov}^{-1}\left(\sigma_{k}, \sigma_{l}\right)}
$$

$$
\rho_{i j} \equiv \frac{\operatorname{Cov}(i, j)}{\sqrt{\operatorname{Var}(i) \operatorname{Var}(j)}}
$$

Combining using the BLUE method (cont.)

- From SM Ensembles:

Analysis	Mean	RMS	$\sigma / \Delta \sigma$
	$\sigma[\mathrm{pb}]$	$\Delta \sigma[\mathrm{pb}]$	
Decision trees (DT)	2.9	1.6	1.8
Matrix elements (ME)	3.3	1.6	2.1
Bayesian neural networks (BNN)	3.0	2.1	1.4
Combined	3.1	1.4	2.2

- The following weights are chosen:

$$
\mathrm{W}_{\mathrm{DT}}=0.401, \mathrm{~W}_{\mathrm{ME}}=0.452, \mathrm{~W}_{\mathrm{BNN}}=0.146
$$

- Expected Significance:

Analysis	Expected p-value	Expected significance [std. dev.]
Decision trees (DT)	0.0177	2.1
Matrix elements (ME)	0.0358	1.8
Bayesian neural networks (BNN)	0.0992	1.3
Combined	0.0137	2.2

Combination Results

$$
\sigma(p \bar{p} \rightarrow t b+t q b+X)=4.8 \pm 1.3 \mathrm{pb}
$$

Analysis	Measured cross section $[\mathrm{pb}]$	p-value	Significance [std. dev.]
Decision trees (DT)	4.9	0.00040	3.4
Matrix elements (ME)	4.6	0.00201	2.9
Bayesian neural networks (BNN)	5.0	0.01157	2.3
Combined	4.8	0.00027	3.5

3.5б significance

