A Signal for a Theory of Flavor at the LHC

P. Aquino, G. Burdman, and O. Éboli

May 7, 2007

Our Goal:

to investigate the potential of the LHC to observe flavor violation in single top production at very high invariant masses, providing a test at tree level for a theory of flavor in extra dimensions.

Warped Extra Dimensions

(Randall–Sundrum)

* One compact extra dimension compactified on ${\bf S^1/Z_2}$ with ${\bf L}=\pi {\bf r}$

$$\mathrm{d}\mathbf{s^2} = \mathbf{e^{-2k|y|}}\eta_{\mu
u}\mathrm{d}\mathbf{x}^\mu\mathrm{d}\mathbf{x}^
u - \mathrm{d}\mathbf{y^2}$$

* k is the AdS_5 curvature $\strut M_P^2 = \frac{M_5^3}{k}(1-e^{-2kL})$

* Geometry \implies hierarchy $\Lambda_{
m TeV} \simeq M_{
m P} e^{-kL}$

* The gauge hierarchy problem is solved for ${f kr}\simeq 12$

* Only gravity propagates in the 5D bulk in the original scenario

* Gauge and matter in the bulk \implies models for EWSB, flavor, etc. (Agashe et al; Csaki et al; Pomarol et al;)

- * Basic idea: 5D fermion mass (ck) leads to localization of the zero mode
- * Assuming that the Higgs lives in the TeV brane:
- 1. fermions localized near the TeV brane are more massive
- 2. fermions localized near the Planck brane are lighter
- * This mechanism avoids fine tuning of Yukawa couplings.

Fermions in the bulk

⇒ The action for fermion fields is

$$\mathbf{S} = \int \mathbf{d}^4 \mathbf{dy} \sqrt{\mathbf{g}} \, \bar{\boldsymbol{\Psi}} \left(\mathbf{i} \boldsymbol{\Gamma}^{\mathbf{M}} \mathbf{D}_{\mathbf{M}} + \mathbf{ck} \, \operatorname{sign}(\mathbf{y}) \right) \boldsymbol{\Psi} \quad \text{with} \quad c \simeq \mathcal{O}(1)$$

→ Defining $\Psi_{L,R} = \frac{1}{2}(1 \mp \gamma_5) \Psi$ we write its KK decomposition as

$$\Psi_{\mathbf{L},\mathbf{R}}(\mathbf{x},\mathbf{y}) = \frac{1}{\sqrt{2\pi r}} \sum_{\mathbf{n}=\mathbf{0}} \psi_{\mathbf{n}}^{\mathbf{L},\mathbf{R}}(\mathbf{x}) \mathbf{e}^{2\sigma} \mathbf{f}_{\mathbf{n}}^{\mathbf{L},\mathbf{R}}(\mathbf{y}) \quad \text{ with } \quad \sigma \equiv k|y|$$

⇒ The zero modes are, with only one allowed by boundary conditions,

$$\mathbf{f_0^{R,L}(y)} = \sqrt{\frac{2k\pi r \left(1 \pm 2c_{R,L}\right)}{e^{k\pi r (1 \pm 2c_{R,L})} - 1}}} \; \mathbf{e}^{\pm \mathbf{c}_{R,L} \, \mathbf{k} \, \mathbf{y}}$$

⇒ The bulk Yukawa couplings are

$$\mathbf{S}_{\mathbf{Y}} = \int \mathbf{d}^{4}\mathbf{x} \, \mathbf{d}\mathbf{y} \sqrt{-\mathbf{g}} \frac{\lambda_{ij}^{5D}}{2 \, \mathbf{M}_{5}} \, \bar{\boldsymbol{\Psi}}_{i}(\mathbf{x},\mathbf{y}) \delta(\mathbf{y}-\pi \mathbf{r}) \mathbf{H}(\mathbf{x}) \boldsymbol{\Psi}_{j}(\mathbf{x},\mathbf{y})$$

⇒ This leads to the 4D mass matrix for the zero modes

$$\mathbf{M_{ij}} = \frac{\lambda_{ij}^{5\mathbf{D}} \mathbf{v}}{2\pi \mathbf{r} \mathbf{M_5}} \mathbf{f_{0i}^{L}}(\pi \mathbf{r}) \mathbf{f_{0j}^{R}}(\pi \mathbf{r})$$

$$\Rightarrow \text{Since } \mathbf{k}/\mathbf{M}_5 \simeq \mathcal{O}(1) \implies \frac{\lambda_{ij}^{5\mathbf{D}}\,\mathbf{k}}{\mathbf{M}_5} \simeq \mathcal{O}(1)$$

 \Rightarrow Localizing the zero modes towards the Planck or TeV branes can leads to a natural solution for the fermion mass hierarchy problem ($|\lambda_{ij}^{5D}| \sim O(1)$)

 \Rightarrow Mass matrix diagonalization \implies U_L, U_R, and D_L with V_{CKM} = U_L[†]D_L.

Pheno07

Gauge Fields in the Bulk

 \Rightarrow The KK expansion of a gauge field is (in the gauge $A_y = 0$)

$${f A}_{\mu}({f x},{f y}) = rac{1}{\sqrt{2\pi r}} \; \sum_{{f n}={f 0}} {f A}_{\mu}^{({f n})}({f x}) \chi^{({f n})}({f y})$$

 \nleftrightarrow The $\mathbf{n}>\mathbf{0}$ modes are massive with $\mathbf{m_1}\simeq\mathcal{O}(\mathbf{1})$ TeV.

 \Rightarrow For the first excitations, $\chi^{(1)}$ is localized towards the TeV brane.

4D gauge coupling to fermions come from

$$\mathbf{g_5}\int \mathbf{d}^4\mathbf{x}\int \mathbf{dy}\,\sqrt{\mathbf{g}}\, \mathbf{ar{\Psi}}(\mathbf{x},\mathbf{y}) \mathbf{\Gamma}^{\mu}\mathbf{T}^{\mathbf{a}}\mathbf{G}^{\mathbf{a}}_{\mu}(\mathbf{x},\mathbf{y}) \mathbf{\Psi}(\mathbf{x},\mathbf{y})$$

The couplings are not universal.

Fermions localized at the TeV brane have strong couplings with the first KK gauge bosons.

 \nleftrightarrow We assumed light quarks and $\mathbf{b}_{\mathbf{R}}$ are localized on the Planck brane.

- \Rightarrow Electroweak precision measurements and $Z \rightarrow b\overline{b}$ can be used to constrain the parameters of the model. (Agashe et al. 03; Agashe et al 06)
- ✓ 1 TeV KK scale can be accommodated (Cacciapaglia et al 06)

 \Rightarrow We considered $c_L^3 \in [0.3, 0.4]$ and $c_R^t \in [-0.4, 0.1] \implies$ correct top mass and no conflict with electroweak measurements.

 \Rightarrow Seeing a tt resonance does not mean seeing flavor violation.

Flavor Violation

 \triangleright Wave function in the extra dimension \implies couplings. The flavor diagonal couplings ${\bf G^{(1)}qq}$ in units of ${\bf g_s}$ are

 $\tilde{\mathbf{g}}_{l}^{q} = \tilde{\mathbf{g}}_{R}^{q} = \tilde{\mathbf{g}}_{R}^{b} \simeq -0.2 \quad ; \quad \tilde{\mathbf{g}}_{L}^{t} = \tilde{\mathbf{g}}_{L}^{b} = [1.0, 2.8] \quad ; \quad \tilde{\mathbf{g}}_{R}^{t} = [1.5, 5]$

▷ The width of the first KK gluon is $\Gamma \simeq rac{lpha_{
m s}}{12} \, {
m M_G} \left(9 \, { ilde {
m g}_{
m q}}^2 + 2 \, { ilde {
m g}_{
m t_L}}^2 + { ilde {
m g}_{
m t_R}}^2
ight)$

 \triangleright The minimum width is $\Gamma_{\rm min.}\simeq 0.04\,M_G$ while the maximum width is $\Gamma_{\rm max.}\simeq 0.35\,M_G$

We are interested in the flavor violation couplings of the first KK excitation of the gluons

 \triangleright Rotation to quark mass eigenstates \implies flavor changing couplings

 $\bigcirc \text{ Currents: } (\mathbf{U}_{\mathbf{L}}^{\text{tt}})^{2} (\overline{\mathbf{t}}_{\mathbf{L}} \mathbf{T}^{\mathbf{a}} \gamma_{\mu} \mathbf{t}_{\mathbf{L}}), \mathbf{U}_{\mathbf{L}}^{\text{tc}} \mathbf{U}_{\mathbf{L}}^{\text{tt}} (\overline{\mathbf{t}}_{\mathbf{L}} \mathbf{T}^{\mathbf{a}} \gamma_{\mu} \overline{\mathbf{c}}_{\mathbf{L}}) \text{ and } \mathbf{U}_{\mathbf{L}}^{\text{tu}} \mathbf{U}_{\mathbf{L}}^{\text{tt}} (\overline{\mathbf{t}}_{\mathbf{L}} \overline{\mathbf{T}^{\mathbf{a}}} \gamma_{\mu} \mathbf{u}_{\mathbf{L}}).$

 $\textbf{Similarly, } (\mathbf{U}_{\mathbf{R}}^{\mathrm{tt}})^{2} (\overline{\mathbf{t}}_{\mathbf{R}} \mathbf{T}^{\mathbf{a}} \gamma_{\mu} \mathbf{t}_{\mathbf{R}}), \mathbf{U}_{\mathbf{R}}^{\mathrm{tc}} \mathbf{U}_{\mathbf{R}}^{\mathrm{tt}} (\overline{\mathbf{t}}_{\mathbf{R}} \mathbf{T}^{\mathbf{a}} \gamma_{\mu} \mathbf{c}_{\mathbf{R}}) \text{ and } \mathbf{U}_{\mathbf{R}}^{\mathrm{tu}} \mathbf{U}_{\mathbf{R}}^{\mathrm{tt}} (\overline{\mathbf{t}}_{\mathbf{R}} \mathbf{T}^{\mathbf{a}} \gamma_{\mu} \mathbf{u}_{\mathbf{R}})$

the rotation matrices U are not observable in the SM.

ig> We can assume that $U_L \simeq \sqrt{V_{\rm CKM}}$, and similarly for $D_L \implies U_L^{tc} \simeq V_{cb} \simeq 0.04$ and $U_L^{tu} \simeq V_{ub} \simeq 0.004$

▷ There is no bias from the SM on the entries of U_R . We consider $\mathbf{U}_{\mathbf{R}}^{tc}$ and $\mathbf{U}_{\mathbf{R}}^{tu}$ as free parameters, defining $\mathbf{U}_{\mathbf{R}}^{tq} \equiv \sqrt{(\mathbf{U}_{\mathbf{R}}^{tc})^2 + (\mathbf{U}_{\mathbf{R}}^{tu})^2}$.

LHC Discovery Potential

✤ We studied the flavor violating process

$${f pp}
ightarrow {f G}_{\mu}^{{f a}(1)}
ightarrow {f tq}
ightarrow {f b} \ell^{\pm}
u_{\ell} {f q} \quad {
m with} \quad {f q} = {f u} \,, \, {f c}$$

Event characteristics

- one light jet
- one b tagged jet
- one charge lepton ($\mathbf{e}^{\pm}\,,\,\mu^{\pm}$)
- missing $\mathbf{p}_{\mathbf{T}}$

The main backgrounds are

• $\mathbf{pp} \to \mathbf{t}\overline{\mathbf{t}} \to \mathbf{b}\ell^+\nu_\ell \overline{\mathbf{b}}\ell^-\overline{\nu}_\ell$

- ★ one of the b jets is mistagged
- \star one of the charged leptons is either lost or embedded in the jets.
- \star the flavor-conserving signal for $\mathbf{G}^{\mathbf{a}(1)}_{\mu}$ decaying to $t\bar{t}$ is a background

•
$$\mathbf{pp} \rightarrow \mathbf{W}^{\pm}\mathbf{jj} \rightarrow \ell^{\pm}\nu\mathbf{jj}$$

⋆ one of the light jets is tagged as a b jet.

- $\mathbf{pp} \to \mathbf{W}^{\pm} \mathbf{b} \mathbf{\bar{b}} \to \ell^{\pm} \nu \mathbf{b} \mathbf{\bar{b}}$
 - \star one of the b jets is mistagged.
- $\mathbf{pp} \to \mathbf{W}^{*\pm} \to \mathbf{t}\mathbf{\bar{b}} + \mathbf{\bar{t}b} \to \mathbf{b}\mathbf{\bar{b}}\ell^{\pm}\nu$
 - ★ where one of the b jet is mistagged.

• $\mathbf{pp} \to \mathbf{tbj} \to \mathbf{b\bar{b}j}\ell^{\pm}\nu$

 \star one of the jets is lost and just one jet is tagged as a b jet.

Signal and backgrounds simulated with Madevent

✤ Lepton and jet acceptance cuts

$$\begin{array}{ll} p_T^j > 20 \; {\rm GeV} & , & |y_j| < 2.5 \; , \\ p_T^\ell \ge 20 \; {\rm GeV} & , & |y_\ell| \le 2.5 \\ \Delta R_{\ell j} \ge 0.63 & , & \Delta R_{\ell \ell} \ge 0.63 \; , \end{array}$$

Surther cuts:

1. The invariant mass of the visible particles should be in

 $\overline{\mathbf{M}_{\mathbf{G}^{(1)}}} - \mathbf{\Delta} \leq \mathbf{M}_{\mathbf{bj}\ell} \leq \mathbf{M}_{\mathbf{G}^{(1)}} + \mathbf{\Delta}$

 $\Delta=120$ (250) GeV for $\mathbf{M}_{\mathbf{G}^{(1)}}=1$ (2) TeV.

2. The transverse momentum of the light jet must satisfy

 $\mathbf{p_{j\ light}} \geq \mathbf{p}_{\mathrm{cut}}$

where $\mathbf{p}_{\mathrm{cut}}=350$ (650) GeV for $\mathbf{M}_{\mathbf{G}^{(1)}}=1$ (2) TeV.

Oscar Éboli

Store Baller

14

Surther cuts:

1. The invariant mass of the visible particles should be in

 $\overline{\mathbf{M}_{\mathbf{G}^{(1)}}} - \mathbf{\Delta} \leq \mathbf{M}_{\mathbf{bj}\ell} \leq \mathbf{M}_{\mathbf{G}^{(1)}} + \mathbf{\Delta}$

 $\Delta=120$ (250) GeV for $\mathbf{M}_{\mathbf{G}^{(1)}}=1$ (2) TeV.

2. The transverse momentum of the light jet must satisfy

 $\mathbf{p_{j\ light}} \geq \mathbf{p}_{\mathrm{cut}}$

where $\mathbf{p}_{\mathrm{cut}}=350$ (650) GeV for $\mathbf{M}_{\mathbf{G}^{(1)}}=1$ (2) TeV.

16

😒 Further cuts:

Pheno07

1. The invariant mass of the visible particles should be in

 $\mathbf{M}_{\mathbf{G}^{(1)}} - \mathbf{\Delta} \leq \mathbf{M}_{\mathbf{bj}\ell} \leq \mathbf{M}_{\mathbf{G}^{(1)}} + \mathbf{\Delta}$

 $\Delta=120$ (250) GeV for $\mathbf{M}_{\mathbf{G}^{(1)}}=1$ (2) TeV.

2. The transverse momentum of the light jet must satisfy

 $\mathbf{p}_{j \; light} \geq \mathbf{p}_{cut}$

where $\mathbf{p}_{\mathrm{cut}}=350$ (650) GeV for $\mathbf{M}_{\mathbf{G}^{(1)}}=1$ (2) TeV.

3. The invariant mass of the charged lepton and the b tagged jet must obey

Oscar Éboli

 $m \rell$ Background and signal cross section after cuts for ${f M}_{G^{(1)}}=2$ TeV

Process	${ m M_{bjl}}$	$\mathbf{p_{jlight}^{T}}$	$\mathbf{M}_{\mathbf{b}\ell}$
$\mathbf{pp} ightarrow \mathbf{tj}$	5.10 fb	2.18 fb	2.18 fb
$\mathbf{pp} ightarrow \mathbf{Wjj}$	25.4 fb	3.79 fb	0.95 fb
$\mathbf{pp} ightarrow \mathbf{t} \overline{\mathbf{t}}$	1.60 fb	0.29 fb	0.24 fb
$\mathbf{pp} ightarrow \mathbf{Wbb}$	0.97 fb	0.45 fb	0.06 fb
$\mathbf{pp} ightarrow \mathbf{tb}$	0.04 fb	0.02 fb	0.02 fb
$\mathbf{W}\mathbf{g}$ fusion	1.20 fb	0.10 fb	0.10 fb

 \bigstar Signal obtained using $\mathbf{U}_{\mathbf{L}}^{t\mathbf{q}}=\mathbf{0}$ and $\mathbf{U}_{\mathbf{R}}^{t\mathbf{q}}=\mathbf{1}$

 \rella Bulk masses such that $\Gamma_{G} = 0.04~M_{G}$

Oscar Éboli

Pheno07

$\mathbf{M}_{\mathbf{G}}$ [TeV]	$30~{ m fb}^{-1}$	$100 { m ~fb}^{-1}$	$300~{ m fb}^{-1}$
1	0.24	0.18	0.14
2	0.65	0.50	0.36

Conclusions

 \Rightarrow We showed that the LHC is able to study flavor violation in the single production of tops at high energy.

 \Rightarrow The signal requires that gauge fields and matter propagate in the bulk.

 \Rightarrow This observation can only be a consequence of the tree-level flavor violation characteristic in extra dimension models.

☆ The LHC has the potential to observe this phenomenon up to KK gluon masses of at least $M_{G^{(1)}} = 2$ TeV for interesting values of the parameter U_R^{tq} .

