VECTOR DYNAMICS IN LOCALLY INVARIANT BRANE WORLD MODELS

S.T. LOVE

PHENO 07: PRELUDE TO THE LHC MADSION, MAY 7-9, 2007

Outline

- Appearance of vector field(s) generic feature of locally invariant brane world models
- Couple vector to the Standard Model. Construct invariant operators.
- Examine various constraints on the parameters in effective operators as well as some vector decay properties.

Collaborators: T.E. Clark, M. Nitta, T. ter Veldhuis, C. Xiong

D-dimensional invariant interval

$$
d s^{2}=\bar{g}_{\mu \nu}(x) A(y) d x^{\mu} d x^{\nu}+g_{a b}^{\prime}(y) d y^{a} d y^{b}
$$

with

$$
\begin{aligned}
& \mu, \nu=0,1,2,3 ; \quad \text { coordinates } x^{\mu} \\
& a, b=1,2, \ldots, D-4 ; \quad \text { coordinates } y^{a}
\end{aligned}
$$

Warp factor $A(y)$ normalized as $A(0)=1$
Insert 4-dimensional probe brane at position $\left(x^{\mu}, y^{a}(x)\right)$

Ground state: $y^{a}(x)=0$

Focus on case:

No warping: $A(y)=1$
Co-dimension 1: $a=1$

Presence of probe brane breaks 5-dimensional space-time symmetries:
translation in $4^{\text {th }}$ space dimension parametrized by a

Lorentz transformations involving $4^{\text {th }}$ space dimension parametrized by b^{μ}

Associated with broken translation is NambuGoldstone boson field $\phi(x)$

Transforms nonlinearly under broken global spacetiome symmetries

$$
\delta \phi(x)=a F+b^{\mu}\left(F^{2} x_{\mu}-\frac{1}{F^{2}} \phi(x) \partial_{\mu} \phi(x)\right)
$$

Nambu-Goldstone field dynamics gives motion of probe brane into the $5^{t h}$ dimension

No independent Nambu-Goldstone modes associated with broken Lorentz generators

Brane oscillations gives rise to induced metric on the brane

Invariant 4-dimensional spce-time interval:

$$
d s^{2}=\eta_{\mu \nu} d x^{\mu} d x^{\nu}+\frac{1}{F^{4}} \partial_{\mu} \phi(x) \partial_{\nu} \phi(x) d x^{\mu} d x^{\nu}
$$

Action for Nambu-Goldstone dynamics:

$$
\begin{aligned}
S_{N G} & =-F^{4} \int d^{4} x\left[\sqrt{\operatorname{det} g_{\mu \nu}}-1\right] \\
& =-F^{4} \int d^{4} x\left[\sqrt{1+\frac{1}{F^{4}} \partial_{\mu} \phi(x) \partial^{\mu}(x)}-1\right]
\end{aligned}
$$

Nambu-Goto action: brane tension $\sigma=F^{4}$

Have subtracted a constant thereby setting the vacuum energy to zero. It can be adjusted accordingly
$4 \pi F$ acts as scale above which effective theory breaks down

Action invariant under nonlinear Nambu-Goldstone transformations associated with broken global space-time symmetries

Make $5^{\text {th }}$ dimension translations local: $a=a(x)$

Construction of invariant action follows usual procedure

Introduce gauge field $X^{\mu}(x)$ and covariant derivative:

$$
\partial_{\mu} \phi \rightarrow \partial_{\mu} \phi-g F X_{\mu}
$$

$S_{N G}$ in unitary gauge, $\phi(x)=0$, gives vector mass term

$$
S_{\text {mass }}=-\frac{1}{2} M_{X}^{2} \int d^{4} x X^{\mu} X_{\mu}+\ldots
$$

$M_{X} \equiv g F$ independent mass scale: Higgs mechanism

Presence of such a vector generic consequence of brane world models

Include kinetic term for X^{μ} via field strength: $X_{\mu \nu}$

Massive $U(1)$ vector field Proca action:

$$
S_{\text {Proca }}=-\frac{1}{4} \int d^{4} x X^{\mu \nu} X_{\mu \nu}-\frac{1}{2} M_{X}^{2} \int d^{4} x X^{\mu} X_{\mu}+\ldots
$$

Couplings to Standard Model:
X transforms as $S U(3) \times S U(2) \times U(1)$ singlet

- Induced metric couples to Standard Model symmetric energy momentum tensor $T_{S M}^{\mu \nu}$

$$
S_{g T}=\frac{1}{F^{2}} \int d^{4} x X_{\mu} X_{\nu} T_{S M}^{\mu \nu}+\ldots
$$

Coupling is bilinear in X^{μ}

- Linear couplings in X^{μ} arise from extrinsic curvature.

Measures curvature of embedded 4-d brane relative to enveloping 5 -d geometry

Extrinsic curvature tensor in unitary gauge:

$$
K^{\mu \nu}=-\frac{1}{F} \partial^{\mu} X^{\nu}+\frac{1}{2 F^{3}} X_{\lambda} X^{\lambda} \partial^{\mu} X^{\nu}+\frac{1}{2 F^{3}} X^{\mu} X_{\lambda} \partial^{\nu} X^{\lambda}+\ldots
$$

Linear couplings to X^{μ} always contain derivatives

Invariant couplings constructed by contracting $K^{\mu \nu}$ with other tensors

Effective coupling of X^{μ} to SM fermion pairs

$$
\begin{aligned}
\mathcal{O}_{f 1} & =\frac{1}{F} \int d^{4} x\left(\partial^{\nu} X_{\nu}\right) \bar{f}_{i}\left(c_{1 V_{i j}}+c_{1 A_{i j}} \gamma_{5}\right) f_{j} \\
\mathcal{O}_{f 2} & =\frac{1}{F} \int d^{4} x\left(\partial^{\nu} X_{\mu}\right) \bar{f}_{i} \sigma^{\mu \nu}\left(c_{2 V_{i j}}+c_{2 A_{i j}} \gamma_{5}\right) f_{j} \\
\mathcal{O}_{f 3} & =\frac{1}{F^{2}} \int d^{4} x\left(\partial^{2} X_{\nu}\right) \bar{f}_{i} \gamma^{\nu}\left(c_{3 V_{i j}}+c_{3 A_{i j}} \gamma_{5}\right) f_{j} \\
\mathcal{O}_{f 4} & =\frac{1}{F^{2}} \int d^{4} x\left(\partial_{\mu} X_{\nu}\right) \bar{f}_{i} \gamma^{\nu}\left(c_{4 V_{i j}}+c_{4 A_{i j}} \gamma_{5}\right) \partial^{\mu} f_{j} \\
\mathcal{O}_{f 5} & =\frac{1}{F^{2}} \int d^{4} x\left(\partial_{\mu} X_{\nu}\right) \bar{f}_{i} \gamma^{\mu}\left(c_{5 V_{i j}}+c_{5 A_{i j}} \gamma_{5}\right) \partial^{\nu} f_{j} \\
\mathcal{O}_{f 6} & =\frac{1}{F^{2}} \int d^{4} x\left(\partial_{\mu} \partial^{\nu} X_{\nu}\right) \bar{f}_{i} \gamma^{\mu}\left(c_{6 V_{i j}}+c_{6 A_{i j}} \gamma_{5}\right) f_{j}
\end{aligned}
$$

f_{i} is $i^{\text {th }}$ generation fermion field In general X can mix generations

Different from generic Z^{\prime} which can couple directly to fermionic current.

Effective coupling of X^{μ} to Standard Model gauge bosons:

$$
\mathcal{O}_{V V^{\prime}}=\frac{1}{F^{2}} \int d^{4} x\left(\partial_{\mu} X_{\nu}\right)\left[c_{V_{V V^{\prime}}} V_{\mu \lambda} V^{\prime}{ }_{\nu}+c_{A_{V V^{\prime}}} V_{\mu \lambda} \tilde{V}^{\prime}{ }_{\nu}\right]
$$

where $V, V^{\prime}=W_{ \pm}, Z^{0}, \gamma$

Want to constrain/determine values of M_{X}, F and dimensionless constants c_{i}

- LEP2 limits

Absence of X discovery for $\sqrt{s}<205 \mathrm{GeV}$ dictates $M_{X}>205 \mathrm{GeV}$

Further requires that any signal produced via virtual propagation of mass $M_{X}>205 \mathrm{GeV} X$ vector be less than a discovery which is taken as 5σ above the Standard Model physics
$\left.\sigma\left(e^{+} e^{-} \rightarrow X \rightarrow\right.$ hadrons $)\right|_{\sqrt{s}=200 \mathrm{GeV}}<5 \sqrt{\frac{\sigma_{\text {had }}}{\mathcal{L}}} \simeq 0.1 \mathrm{pb}$
where $\sigma_{h a d} \sim .1 n b$ is total observed hadronic cross section and $\mathcal{L} \sim 700 \mathrm{pb}^{-1}$ is integrated luminosity

Using the effective operator couplings $\mathcal{O}_{f 1}-\mathcal{O}_{f 6}$ of X to fermion pairs ($\bar{f} f$) yields the leading in $1 / F$ off resonance cross section ($m_{f}=0$)

$$
\sigma\left(e^{+} e^{-} \rightarrow X \rightarrow \text { hadrons }\right)=\sum_{q} \frac{1}{16 \pi} c_{1 q}^{2} c_{1 e}^{2} \frac{s^{3}}{M_{X}^{4} F^{4}}
$$

where $c_{1_{f}}^{2} \equiv c_{1 V_{f f}}^{2}+c_{1 A_{f f}}^{2}$.
Plugging in the numbers taking $c_{1 q}^{2}=c_{1 e}^{2} \equiv c_{1}^{2}$ yields the constraint on the brane tension as a function of vector mass:

Figure 1: Allowed F / c_{1} values lie above the curve
Restricts $\frac{F}{c_{1}}>\mathcal{O}(\mathrm{TeV})$ for $M_{X}>205-400 \mathrm{GeV}$

- X decays: $\quad X \rightarrow \bar{f}_{i} f_{j}$

Leading $1 / F^{2}$ contribution obtained from effective coupling $\mathcal{O}_{f_{2}}$ as $\left(m_{f}=0\right)$

$$
\Gamma\left(X \rightarrow f_{i} \bar{f}_{j}\right)=\frac{c_{2_{i j}}^{2}}{24 \pi} \frac{M_{X}^{3}}{F^{2}}
$$

where $c_{2_{i j}}^{2}=\left|c_{2 V_{i j}}+c_{2 A_{i j}}\right|^{2}$
Assuming only flavor diagonal decays and defing $c_{2}^{2}=\Sigma_{q} c_{2_{q q}}^{2}$ gives

Figure 2: Decay rate $X \rightarrow$ hadrons ; red (blue) curve corresponds to $\frac{F}{c_{2}}=500 \mathrm{GeV}(1000 \mathrm{GeV})$

- $X^{\mu} \rightarrow \gamma Z^{0}, W^{+} W^{-}, Z^{0} Z^{0}$

Leading linear in X^{μ} couplings to Standard Model vector bosons go as $1 / F^{2}$. Thus decay rates $\sim 1 / F^{4}$.

Surpressed relative to fermion decay modes ($\sim 1 / F^{2}$)

Taking various coefficients to be equal,

$$
\frac{\Gamma\left(Z^{0} \gamma\right)}{\Gamma(\bar{f} f)}=\frac{1}{16} \frac{M_{X}^{2}}{F^{2}}\left(1-\frac{M_{Z}^{2}}{M_{X}^{2}}\right)\left(1+6 \frac{M_{Z}^{2}}{M_{X}^{2}}+\frac{M_{Z}^{4}}{M_{X}^{4}}\right)
$$

Figure 3: $\frac{\Gamma(X \rightarrow \gamma Z)}{\Gamma(X \rightarrow f f)}$ for $F=500 \mathrm{GeV}$ and $M_{X}>205 \mathrm{GeV}$ taking all couplings c equal

Alternate probe of $M_{X}>205 \mathrm{GeV}$

- X^{μ} in loops:
- Anomalous magnetic moment of muon:

Brookhaven $g_{\mu}-2$ experiment:

$$
a_{\mu}(\exp)-a_{\mu}(S M)=(23.4 \pm 9.1) \times 10^{-10}
$$

Assume deviation from SM result entirely due to virtual X exchange

Using representative coupling: $\frac{c_{i} l_{j}}{F^{2}} \int d^{4} x\left(\partial^{2} X_{\mu}\right) \bar{l}_{i} \gamma^{\mu} l_{j}$ gives

$$
\Delta a_{\mu}=\frac{\Delta\left(g_{\mu}-2\right)}{2}=\frac{1}{24 \pi^{2}}\left(\frac{\Lambda}{F}\right)^{2} \frac{m_{\mu}}{F} \sum_{l} c_{\mu l}^{2} \frac{m_{l}}{F}
$$

where $\Lambda<4 \pi F$ is an ultraviolet cutoff on the internal loop momentum: treat as independent scale

To get idea of scales: assume no lepton flavor mixing and take $\Lambda=\pi F$

$$
\frac{F}{c_{\mu \mu}} \sim \mathcal{O}(\mathrm{TeV})
$$

- $\mu^{-} \longrightarrow e^{-} \gamma$

Contribution from virtual X exchange:

Use same operator as in $g_{\mu}-2$ calculation
Non-zero result requires X to mix μ with e

$$
\Gamma\left(\mu^{-} \rightarrow e^{-} \gamma\right)=\frac{m_{\mu}}{128 \pi}\left[\frac{c_{\mu \mu} c_{\mu e}}{32 \pi^{2}}\left(\frac{\Lambda}{F}\right)^{4}\left(\frac{m_{\mu}}{F}\right)^{2}\right]^{2}
$$

Using same numbers as in $g_{\mu}-2$ result

$$
\begin{aligned}
\Gamma\left(\mu^{-} \rightarrow e^{-} \gamma\right) & =\frac{m_{\mu}}{128 \pi}\left(\frac{c_{\mu e}}{c_{\mu \mu}}\right)^{2}\left(\Delta a_{\mu}\right)^{2} \\
& =1.5 \times 10^{-19}\left(\frac{c_{\mu e}}{c_{\mu \mu}}\right)^{2} G e V
\end{aligned}
$$

Experimentally

$$
\begin{aligned}
\Gamma\left(\mu^{-} \rightarrow e^{-} \gamma\right) & <1.2 \times 10^{-11} \Gamma\left(\mu^{-} \rightarrow e^{-} \nu_{\mu} \bar{\nu}_{e}\right) \\
& <3.7 \times 10^{-30} \mathrm{GeV}
\end{aligned}
$$

so that

$$
\frac{c_{\mu e}}{c_{\mu \mu}}<5 \times 10^{-5}
$$

Lepton flavor mixing surpressed

Summary

- Embedded 4-dimensional probe brane into 5 dimensional space-time which breaks $5^{t h}$ dimension translation invariance. Dynamics of associated Nambu-Goldstone mode describes oscillations of brane into extra dimension.
- Gauging broken $5^{\text {th }}$ dimensional translations leads to massive Proca vector field X which is a Standard Model singlet
- Coupled X to the Standard Model

Focused on terms linear in X which arise due presence of extrinsic curvature tensor
Also manifest in models with additional anisotropic co-dimensions

Constructed effective operators coupling X to fermions and Standard model gauge bosons All such terms involve derivative couplings

- Examined various constraints on the brane tension arising from $L E P 2, g_{\mu}-2, \mu^{-} \rightarrow e^{-} \gamma$ as well as decay properties of the vector. If $M_{X} \sim 200-400 \mathrm{GeV}$, require $\frac{F}{c}>\mathcal{O}(\mathrm{TeV})$

