



## **Top Pair Production Cross Section** at DØ

### Hwidong Yoo Brown University



05/08/07 PHENO 07, Madison



## Introduction



- Top quark was discovered at 1995 by DØ and CDF Collaborations
- **Tevatron** is still the only place to produce the top events in the world
- Top pair events are important to understand the Standard Model and search New physics
  - important background for Higgs search
  - Theoritical Prediction of SM
    - $6.8 \pm 0.6$  pb (Kidonakis and Vogt)
    - $6.7 + 0.7_{-0.9}$  pb (Cacciari et al.)
    - Theoritical uncertainty is 9 ~ 13%





## **Tevatron and DØ detector**



#### • Tevatron

- $p\bar{p}$  collider with  $\sqrt{s} = 1.96$  TeV
- Integ. Lumi. 2.85fb<sup>-1</sup>(delivered), 2.41fb<sup>-1</sup>(recorded)
- expect 3fb<sup>-1</sup> by July!
- DØ Detector
  - Silicon Vertex Detector
  - Central Tracker
  - EM and Hadronic Calorimetors
  - Muon Detector





#### 05/08/07 PHENO 07

Hwidong Yoo

**Top Quark Production and Decay** 

Top quark pair production at Tevatron energies



q $\overline{q}$  anihilation (~ 85%)

gluon fusion (~ 15%)

- Top quark decays to Wb with ~100% due to it's heavy mass
  - So, the final states are determined by what W boson decays
  - 3 types of channels

05/08/07 PHENO 07

- lepton + jets channel (BR ~ 34%)
- di-lepton channel (BR ~ 6%)
- all hadronic channel



#### **Top Pair Branching Fractions**

Hwidong Yoo

I, q

b



## **Analysis Procedure**

**Topological Analysis** 

**b**-tagging

- 3 steps for letpon+jets channel
  - Pre-selection
    - Extract signal events with maximum efficiency
    - Reject instrumental backgrounds
  - Analysis method Applied \_\_\_\_\_\_
    - Reject Physics backgrounds
  - Calculate cross section
- 2 steps for di-lepton channel
  - Pre-selection
    - Just few background processes share the signature of di-lepton channel
  - Calculate cross section







## **lepton+jets Channel**



## **Event Signature and Preselection**

- Signal
  - one isolated, high pT letpon
  - Large Missing Transverse Energy (MET)
  - $\geq$  4 jets
- Background
  - Main physics background is W+jets
  - Multi-jet background
- Preselection
  - $\geq$ 4 jets in the event with jet pT > 20 GeV
    - 3 jets events used in b-tagging analysis
  - good vertex with  $|z_{PV}| \le 60$ cm and at least 3 tracks attatched
  - Second lepton veto (orthogonal to dilepton channel)
  - lepton coming from the primary vertex  $|\Delta z(\text{lepton},\text{PV})| < 1 \text{ cm}$
  - A tight isolation lepton with pT > 20 GeV
  - Large MET > 20 GeV







- QCD multi-jet background is estimated from data
  - determine by Matrix Method
  - use loose and tight lepton selection
  - linear equations for N<sup>QCD</sup> and N<sup>Wjets+tt</sup>
  - e+jets:  $\varepsilon_{sig} \sim 0.85$ ,  $\varepsilon_{QCD} \sim 0.18$
  - mu+jets:  $\varepsilon_{sig} \sim 0.84$ ,  $\varepsilon_{QCD} \sim 0.24$

the efficiency for a true isolated lepton to pass the tight lepton isolation selection

**loose lepton** 

**) 7** 

the efficiency for a fake lepton to pass the tight lepton isolation selection





## **lepton+jets** Channel

**b-tagging analysis** 

## **Jet Tagging**





- New NN tagger efficiency is improved (~15%) 0
  - b-jet tagging efficiency : ~ 69%
  - old tagger used for 425 pb<sup>-1</sup> : ~ 60%
  - smaller systematic uncertainties
- MC Event Weight O
  - $p_i = probability$  for jet i to be tagged
  - n = number of jets in the event

$$P_{\geq 1} = 1 - \prod_{i=1}^{n} (1 - p_i)$$

$$P_{=1} = \sum_{i=1}^{n} \left\{ p_i \prod_{j \neq i} (1 - p_j) \right\}$$

$$P_{\geq 2} = P_{\geq 1} - P_1$$

**NN tagger** Tagger + NN b-Jet Efficiency (%) JLIP 80 70 60 50 old b-tagger 40 30 p\_>15 and All r 20 10 12 Fake Rate (%)

Improved of 15% w.r.t. the previous b-jet tagging

05/08/07 PHENO 07

Hwidong Yoo

1



## **MC and Data agreement**

### lepton+jet channel combined







- Cross section is calculated with 8 different channels
  - e+jets: 1 b-tag and  $\geq$ 2 b-tags, 3 jets and  $\geq$ 4 jets (4 channels)
  - mu+jets: 1 b-tag and  $\geq 2$  b-tags, 3 jets and  $\geq 4$  jets (4 channels)
- Cross Section

$$\sigma_{t\bar{t}} = \frac{N_{observed}^{b-tag} - N_{background}^{b-tag}}{L \cdot Br \cdot \varepsilon_{presel} \cdot \varepsilon_{b-tag}} \cdot \varepsilon_{b-tag}$$
Top Mass Dependence

<u>ק</u> 13<sub>[</sub>

$$l + jets: \sigma_{t\bar{t}} = 8.3 + 0.6_{-0.5}(stat) + 0.9_{-1.0}(sys) \pm 0.5(lumi) \text{ pb}$$

$$e + jets: \sigma_{t\bar{t}} = 7.4 \pm 0.7(stat) + 0.8_{-1.0}(sys) \pm 0.4(lumi) \text{ pb}$$

$$\mu + jets: \sigma_{t\bar{t}} = 9.5 \pm 0.9(stat) + 1.1_{-1.3}(sys) \pm 0.6(lumi) \text{ pb}$$

 $\delta\sigma/\sigma = \pm 13\%$ 





# **lepton+jets** Channel

### **Topological Analysis**





## **Topological Analysis**

- Multivariate discriminant
  - event kinematic variables
  - Likelihood fit
- Choice of Topological variables
  - good separation power
  - correlation and sensitivity against systematic uncertainties
- Six variables are used in this analysis
  - Centrality, Aplanarity
  - $\Delta \phi$ (lepton, MET), Sphericity
  - $H_T, K'_{Tmin}$



05/08/07 PHENO 07

Hwidong Yoo



### Likelihood Fit

• The event information contained in the topological variables is combined in a likelihood discriminant  $\prod S_i$ 



**Hwidong Yoo** 

*05/08/07 PHENO 07* 



### **Cross Section**



## • Cross Section $\sigma_{t\bar{t}} = \frac{N^{t\bar{t}}}{L \cdot Br \cdot \mathcal{E}_{presel}} \qquad \sigma_{tt}^{\text{NLO}} = 6.8 \pm 0.6 \text{ pb}$ N. Kidonakis and R Vogt, PRD 68 (2003)

| l + jets :     | $\sigma_{t\bar{t}} = 6.3 + 0.9_{-0.8} (stat) + 0.7_{-0.7} (sys) \pm 0.4 (lumi) \text{ pb}$                     |
|----------------|----------------------------------------------------------------------------------------------------------------|
| e + jets :     | $\sigma_{t\bar{t}} = 6.6^{+1.2}_{-1.1}(\text{stat})^{+0.8}_{-0.8}(\text{sys}) \pm 0.4(\text{lumi}) \text{ pb}$ |
| $\mu$ + jets : | $\sigma_{t\bar{t}} = 5.9^{+1.3}_{-1.2}(stat)^{+0.9}_{-0.8}(sys) \pm 0.4(lumi) \text{ pb}$                      |

**Table for systematic errors** 

for only l+jets combined

| Primary Vertex        | +0.17 -0.16 |  |  |  |  |
|-----------------------|-------------|--|--|--|--|
| Lepton Identification | $\pm 0.28$  |  |  |  |  |
| Jet Energy            | +0.08 -0.06 |  |  |  |  |
| Trigger               | ±0.1        |  |  |  |  |
| W Background Model    | ±0.51       |  |  |  |  |
| MC statistics         | ±0.27       |  |  |  |  |
| Others                | ±0.14       |  |  |  |  |
| Total                 | ±0.7        |  |  |  |  |





# **di-lepton Channel**







### Signal

- 2 high pT opposite charge, ee, eµ, μµ
- $\geq 2$  high pT jets
- Large Missing Transverse Energy(MET)
- Physics Background
  - 2 leptons from Z/  $\gamma^*$  +jets (dominont)
  - 2 leptons from WW/WZ/ZZ + jets
  - estimated from MC
- Instrumental Background
  - fake isolated leptons
  - fake MET
  - estimated from Data



Signal



Background







- Common
  - lepton pT > 15 GeV
  - $\geq 2$  jets with pT > 20GeV
- ee channel
  - Z (WW, WZ, ZZ)  $\rightarrow$  ee +  $\geq$ 2jets + MET
  - Veto events with  $M_{ee} < 15 \text{ GeV}$  or  $80\text{GeV} < M_{ee} < 100\text{GeV}$
  - MET > 35GeV (MET > 40GeV) for  $M_{ee} > 100GeV (80GeV < M_{ee} < 100GeV)$
  - Spericity > 0.15
- eµ channel
  - $Z \rightarrow \tau \tau (\tau \rightarrow e \text{ or } \mu) + \geq 2jets + MET$ , (WW, WZ, ZZ) $\rightarrow e\mu + \geq 2jets + MET$
  - Not apply MET cut
  - $H_T > 115 \text{GeV}, \quad H_T = p_T^{l_1} + \sum p_T^{j}$
- ۵ µµ channel
  - $Z(WW, WZ, ZZ) \rightarrow \mu\mu + \geq 2jets + MET$
  - MET > 35GeV
  - Contour cut in the MET vs.  $\Delta \Phi(\mu, MET)$



## **Instrumental Backgrounds**

- Mis-identified Electron (ee, eµ)
  - Jet mis-identified or non-isloated (b-jet decay)
  - Fit to electron likelihood in data



- Fake isolated muon (eµ, µµ)
  - Non-isolated muon when the jet is not reconstructed
  - estimated from data
- Fake MET (ee)
  - fake MET can appear due to instrumental effects
    - detector resolution, fake jets or noise in calorimeter
  - estimated from  $\gamma$  +jets sample(MET fake rate) and Z/  $\gamma^* \rightarrow$  ee MC



## **Event Yields and Kinematic Dist.**

| Ch                                           | S/B | Category                | ee                        |        | ee          |              | ee          |              | μμ                      |              | μμ          |  | $e\mu$ ( $\geq$ 2jets) |  | eµ (1jet) |  |
|----------------------------------------------|-----|-------------------------|---------------------------|--------|-------------|--------------|-------------|--------------|-------------------------|--------------|-------------|--|------------------------|--|-----------|--|
| ee                                           | 3.2 | <b>Ζ</b> / γ *          | 2.4 <sup>+0.</sup><br>-0. | 4<br>4 | 2.7         | +0.4<br>-0.4 | 3.6         | +0.7<br>-0.8 | 5.5                     | +0.8<br>-0.8 |             |  |                        |  |           |  |
| 1111                                         | 0.6 | WW/WZ and other MC      | $0.4\pm0.2$               | ,      | $0.5\pm0.1$ |              | $0.5\pm0.1$ |              | $0.5 \pm 0.1$ 1.4 $\pm$ |              | : 0.6 3.4 : |  |                        |  |           |  |
| µµ<br>eµ (≥2jets)                            | 4.3 | Instrumental background | 0.2 <sup>+0.</sup><br>-0. | 2<br>1 | 0.4         | +0.2<br>-0.2 | 1.8         | +0.6<br>-0.6 | 1.2                     | +0.4<br>-0.4 |             |  |                        |  |           |  |
| eµ (1jet)                                    | 1.6 | Total background        | <b>3.0</b> +0.            | 5<br>5 | 3.6         | +0.5         | 6.7         | +1.2<br>-1.2 | 10.2                    | +1.8<br>-1.7 |             |  |                        |  |           |  |
| σ <sub>tt</sub> = 7 pb                       |     | Expected signal         | 9.5 +1.<br>-1.            | 4<br>4 | 5.8         | +0.5<br>-0.5 | 28.6        | +2.1<br>-2.1 | 7.1                     | +0.6<br>-0.7 |             |  |                        |  |           |  |
| $\mathbf{M}_{\mathrm{top}} = \mathbf{175Ge}$ | eV  | Total sig. + bg.        | 12.5 +1.<br>-1.           | 5<br>5 | 9.4         | +0.7         | 35.5        | +2.8         | 17.2                    | +2.0         |             |  |                        |  |           |  |
|                                              |     | observed events         | 16                        |        | 9           |              | 32          |              | 16                      |              |             |  |                        |  |           |  |



05/08/07 PHENO 07

Hwidong Yoo







• Cross Section  $\sigma_{t\bar{t}} = \frac{N^{observed} - N^{background}}{L \cdot Br \cdot \varepsilon_{presel}}$ •  $\delta \sigma / \sigma = \pm 22 \%$ di-lepton:  $\sigma_{tt} = 6.8 + 1.2_{-1.1} (\text{stat}) + 0.9_{-0.8} (\text{sys}) \pm 0.4 (\text{lumi}) \text{ pb}$ ee
:  $\sigma_{tt} = 9.6 + 3.2_{-2.7} (\text{stat}) + 1.9_{-1.6} (\text{sys}) \pm 0.6 (\text{lumi}) \text{ pb}$ eµ
:  $\sigma_{tt} = 6.1 + 1.4_{-1.2} (\text{stat}) + 0.8_{-0.7} (\text{sys}) \pm 0.4 (\text{lumi}) \text{ pb}$ µµ
:  $\sigma_{tt} = 6.5 + 4.0_{-3.2} (\text{stat}) + 1.1_{-0.9} (\text{sys}) \pm 0.4 (\text{lumi}) \text{ pb}$ 

**Table for systematic errors** 

for di-lepton combined

| Jet energy calibration         | +0.3 -0.3 |
|--------------------------------|-----------|
| Jet identification             | +0.1 -0.1 |
| Primary Vertex                 | +0.3 -0.2 |
| <b>Electron Identification</b> | +0.6 -0.5 |
| <b>Muon Identification</b>     | +0.2 -0.2 |
| Trigger                        | +0.2 -0.2 |
| Fake background                | +0.2 -0.2 |
| MC normalization               | +0.3 -0.3 |
| Others                         | +0.2 -0.2 |
| Total                          | +0.9 -0.8 |







- Updated top cross section measurements with ~1fb<sup>-1</sup> are agreed well with SM
- lepton+jets channel with b-tagging is currently the most precise top cross section measurement at DØ
  - Due to the improved b-tagging algorithm
- Experimental uncertainty is closed to theoritical one





## **Backup Slides**







## **Summary of decay channels**

- lepton+jets channel
  - high branching fraction
  - manageable background
  - kinematically constraint
  - mainly used for top property measurements
- di-lepton channel
  - low background
  - low statistics
  - no kinematic constraint
- all-hadronic channel
  - highest branching fraction
  - highest background
  - kinematically over-constraint





## **Lepton Identification**



#### Electron

- Loose isolated electron
  - At least 90% of the energy of the cluster must be contained in the electromagnetic section of the calorimeter
  - $\chi^2$  from the 7×7 H-matrix must be less than 50
  - The energy deposition in the calorimeter must be matched with a charged particle track from the tracking detectors with pT > 5GeV
  - $(E_{total}(R < 0.5) E_{EM}(R < 0.2))/E_{EM}(R < 0.2) < 0.15$
- Tight isolated electron
  - Must pass the loose isolation requiremets above, and have a value of the seven-variable EM-likelihood > 0.85

#### • Muon

- Loose isolation muon
  - Medium, |nseg|=3 quality
  - pass loose cosmic ray rejection timing
  - The track reconstructed in the muon system must match a track reconstructed in the central tracker with  $\chi^2/ndof < 4$
  - $\Delta R(\text{muon, jet}) > 0.5$
- Tight isolation muon
  - require to pass Loose isolation muon selection
  - The momenta of all tracks in a cone of radius R < 0.5 around the muon direction, except the track matched to the muon, add up to less than 20% of the muon pT
  - The energy depoisted in an annular cone of radius 0.1 < R < 0.4 around the muon direction is less than 20 % of the muon pT

#### 05/08/07 PHENO 07





- e+jets channel
  - Exactly 3 or  $\geq$ 4 jets with pT > 20GeV and  $|\eta| < 2.5$
  - one tight electron with pT > 20GeV in CC
  - no second tight electron with pT > 15 GeV in CC or EC
  - no isolated muon with pT > 15 GeV
  - good vertex with  $|z_{PV}| \le 60$  cm with at least 3 tracks attached
  - electron coming from the primary vertex  $|\Delta z(e, PV)| < 1$ cm
  - MET > 20GeV and  $\Delta \Phi(e, MET) > 0.7*\pi 0.045*MET$
- mu+jets channel
  - Exactly 3 or  $\geq$ 4 jets with pT > 20GeV and  $|\eta| < 2.5$
  - one tight muon with pT > 20 GeV with muon quality MediumNSeg3
  - invariant mass of the selection muon and any second muon  $M_{\mu\mu} < 70 GeV$  or  $M_{\mu\mu} > 110 GeV$  to reject  $Z(\rightarrow \mu\mu)$ +jets events
  - no second muon with pT > 15 GeV with muon quality MediumNSeg3
  - no tight electron with pT > 15 GeV
  - good vertex with  $|z_{PV}| \le 60$ cm with at least 3 tracks attached
  - muon coming from the primary vertex  $|\Delta z(e,PV)| < 1$ cm
  - MET > 20GeV and  $\Delta \Phi(e, MET) > 0.48*\pi 0.033*MET$  and  $W_{tmss} > 30 \text{ GeV}$





### **Definition of Variables**

$$H_T = \sum E_T$$

- Centrality  $=H_T/H$
- Aplanarity  $M_{ij} = \frac{\sum_{0} p_i^0 p_j^0}{\sum_{0} \left| \vec{p}^0 \right|^2}$

• Sphericity 
$$S = \frac{3}{2} (\lambda_2 + \lambda_3)$$

•  $K'_{T\min} = \frac{\Delta R_{jj}^{\min} E_T^{\min}}{E_T^W}$ 

• 
$$\Delta \phi(lepton, \mathbb{E}_T)$$

H is the scalar sum of the energy of the jets

M is normalized momentum tensor

 $\lambda_2$  and  $\lambda_3$  are smallest eigenvalues of the nomalized momentum tensor M

 $\Delta R_{jj}^{\min} \text{ corresponds to the minimum separation}$ in  $\eta - \phi$  space between a pair of jets  $E_T^{\min}$  is the ET of the lesser jet of that pair  $E_T^W = E_T^{lepton} + E_T$ 

## **Control Plots (b-tagging)**

BRE

UNIVERSITY





4-jets events: various distributions for the data overlayed with the fit results for the combined two channels



05/08/07 PHENO 07





- Contour cut:  $\not\!\!\!E_{T}$  vs.  $\Delta \phi$ (leading  $\not\!\!\!E_{T}$ )
  - 2 neutrinos ⇒ a first cut is set:  $\not\!\!E_T$  > 35 GeV
  - To prevent from misreconstructed muon momenta:
     Δφ(leading  $𝔅_T$ ) < 175°</li>
  - To further reduce background,  $\not\!\!E_{T}$  cut is increased for  $\Delta \phi$  (leading  $\not\!\!E_{T}$ ) close to 0° or 180°









- Luminosity: 1.07 fb<sup>-1</sup>
- Analysis cuts:
  - 2 tight electrons
  - ≥ 2 jets
  - $\not{\!E}_{\tau}$  depends on  $M_{ee}$ :  $\not{\!E}_{\tau}$  > 40 GeV for 15 GeV <  $M_{ee}$  < 80 GeV and  $\not{\!E}_{\tau}$  > 35 GeV for  $M_{ee}$  > 100 GeV
  - Sphericity > 0.15
- Trigger: ORing of all dielectron triggers; Signal efficiency ≈ 94%





- Luminosity: 1.04 fb<sup>-1</sup>
- Analysis cuts:
  - Exactly one loose electron
  - ≥ 1 medium muon
  - No common track between the electron and any loose trtack matched muons
  - ≥ 2 jets
  - $\Delta R$ (selected e, jet)>0.5 and  $\Delta R$ (selected  $\mu$ , jet)>0.5
  - $H_T = p_T(\text{leading lepton}) + p_T (2 \text{ leading jets}) > 115$
- Trigger: Oring of e triggers + matching online/offline objects; Signal Efficiency ≈ 86%



## **After All Cuts**



05/08/07 PHENO 07

Hwidong Yoo





### **After All Cuts**





05/08/07 PHENO 07

Hwidong Yoo